亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Driven by the great advances in metaverse and edge computing technologies, vehicular edge metaverses are expected to disrupt the current paradigm of intelligent transportation systems. As highly computerized avatars of Vehicular Metaverse Users (VMUs), the Vehicle Twins (VTs) deployed in edge servers can provide valuable metaverse services to improve driving safety and on-board satisfaction for their VMUs throughout journeys. To maintain uninterrupted metaverse experiences, VTs must be migrated among edge servers following the movements of vehicles. This can raise concerns about privacy breaches during the dynamic communications among vehicular edge metaverses. To address these concerns and safeguard location privacy, pseudonyms as temporary identifiers can be leveraged by both VMUs and VTs to realize anonymous communications in the physical space and virtual spaces. However, existing pseudonym management methods fall short in meeting the extensive pseudonym demands in vehicular edge metaverses, thus dramatically diminishing the performance of privacy preservation. To this end, we present a cross-metaverse empowered dual pseudonym management framework. We utilize cross-chain technology to enhance management efficiency and data security for pseudonyms. Furthermore, we propose a metric to assess the privacy level and employ a Multi-Agent Deep Reinforcement Learning (MADRL) approach to obtain an optimal pseudonym generating strategy. Numerical results demonstrate that our proposed schemes are high-efficiency and cost-effective, showcasing their promising applications in vehicular edge metaverses.

相關內容

Continuing improvements in computing hardware are poised to transform capabilities for in silico modeling of cross-scale phenomena underlying major open questions in evolutionary biology and artificial life, such as transitions in individuality, eco-evolutionary dynamics, and rare evolutionary events. Emerging ML/AI-oriented hardware accelerators, like the 850,000 processor Cerebras Wafer Scale Engine (WSE), hold particular promise. However, practical challenges remain in conducting informative evolution experiments that efficiently utilize these platforms' large processor counts. Here, we focus on the problem of extracting phylogenetic information from agent-based evolution on the WSE platform. This goal drove significant refinements to decentralized in silico phylogenetic tracking, reported here. These improvements yield order-of-magnitude performance improvements. We also present an asynchronous island-based genetic algorithm (GA) framework for WSE hardware. Emulated and on-hardware GA benchmarks with a simple tracking-enabled agent model clock upwards of 1 million generations a minute for population sizes reaching 16 million agents. We validate phylogenetic reconstructions from these trials and demonstrate their suitability for inference of underlying evolutionary conditions. In particular, we demonstrate extraction, from wafer-scale simulation, of clear phylometric signals that differentiate runs with adaptive dynamics enabled versus disabled. Together, these benchmark and validation trials reflect strong potential for highly scalable agent-based evolution simulation that is both efficient and observable. Developed capabilities will bring entirely new classes of previously intractable research questions within reach, benefiting further explorations within the evolutionary biology and artificial life communities across a variety of emerging high-performance computing platforms.

Biologically, the brain does not rely on a single type of neuron that universally functions in all aspects. Instead, it acts as a sophisticated designer of task-based neurons. In this study, we address the following question: since the human brain is a task-based neuron user, can the artificial network design go from the task-based architecture design to the task-based neuron design? Since methodologically there are no one-size-fits-all neurons, given the same structure, task-based neurons can enhance the feature representation ability relative to the existing universal neurons due to the intrinsic inductive bias for the task. Specifically, we propose a two-step framework for prototyping task-based neurons. First, symbolic regression is used to identify optimal formulas that fit input data by utilizing base functions such as logarithmic, trigonometric, and exponential functions. We introduce vectorized symbolic regression that stacks all variables in a vector and regularizes each input variable to perform the same computation, which can expedite the regression speed, facilitate parallel computation, and avoid overfitting. Second, we parameterize the acquired elementary formula to make parameters learnable, which serves as the aggregation function of the neuron. The activation functions such as ReLU and the sigmoidal functions remain the same because they have proven to be good. Empirically, experimental results on synthetic data, classic benchmarks, and real-world applications show that the proposed task-based neuron design is not only feasible but also delivers competitive performance over other state-of-the-art models.

Autonomous wheeled-legged robots have the potential to transform logistics systems, improving operational efficiency and adaptability in urban environments. Navigating urban environments, however, poses unique challenges for robots, necessitating innovative solutions for locomotion and navigation. These challenges include the need for adaptive locomotion across varied terrains and the ability to navigate efficiently around complex dynamic obstacles. This work introduces a fully integrated system comprising adaptive locomotion control, mobility-aware local navigation planning, and large-scale path planning within the city. Using model-free reinforcement learning (RL) techniques and privileged learning, we develop a versatile locomotion controller. This controller achieves efficient and robust locomotion over various rough terrains, facilitated by smooth transitions between walking and driving modes. It is tightly integrated with a learned navigation controller through a hierarchical RL framework, enabling effective navigation through challenging terrain and various obstacles at high speed. Our controllers are integrated into a large-scale urban navigation system and validated by autonomous, kilometer-scale navigation missions conducted in Zurich, Switzerland, and Seville, Spain. These missions demonstrate the system's robustness and adaptability, underscoring the importance of integrated control systems in achieving seamless navigation in complex environments. Our findings support the feasibility of wheeled-legged robots and hierarchical RL for autonomous navigation, with implications for last-mile delivery and beyond.

Rate split multiple access (RSMA) has been proven as an effective communication scheme for 5G and beyond, especially in vehicular scenarios. However, RSMA requires complicated iterative algorithms for proper resource allocation, which cannot fulfill the stringent latency requirement in resource constrained vehicles. Although data driven approaches can alleviate this issue, they suffer from poor generalizability and scarce training data. In this paper, we propose a fractional programming (FP) based deep unfolding (DU) approach to address resource allocation problem for a weighted sum rate optimization in RSMA. By carefully designing the penalty function, we couple the variable update with projected gradient descent algorithm (PGD). Following the structure of PGD, we embed few learnable parameters in each layer of the DU network. Through extensive simulation, we have shown that the proposed model-based neural networks has similar performance as optimal results given by traditional algorithm but with much lower computational complexity, less training data, and higher resilience to test set data and out-of-distribution (OOD) data.

Training deep neural networks (DNNs) from noisy labels is an important and challenging task. However, most existing approaches focus on the corrupted labels and ignore the importance of inherent data structure. To bridge the gap between noisy labels and data, inspired by the concept of potential energy in physics, we propose a novel Potential Energy based Mixture Model (PEMM) for noise-labels learning. We innovate a distance-based classifier with the potential energy regularization on its class centers. Embedding our proposed classifier with existing deep learning backbones, we can have robust networks with better feature representations. They can preserve intrinsic structures from the data, resulting in a superior noisy tolerance. We conducted extensive experiments to analyze the efficiency of our proposed model on several real-world datasets. Quantitative results show that it can achieve state-of-the-art performance.

Existing methods for creating source-grounded information-seeking dialog datasets are often costly and hard to implement due to their sole reliance on human annotators. We propose combining large language models (LLMs) prompting with human expertise for more efficient and reliable data generation. Instead of the labor-intensive Wizard-of-Oz (WOZ) method, where two annotators generate a dialog from scratch, role-playing agent and user, we use LLM generation to simulate the two roles. Annotators then verify the output and augment it with attribution data. We demonstrate our method by constructing MISeD -- Meeting Information Seeking Dialogs dataset -- the first information-seeking dialog dataset focused on meeting transcripts. Models finetuned with MISeD demonstrate superior performance on our test set, as well as on a novel fully-manual WOZ test set and an existing query-based summarization benchmark, suggesting the utility of our approach.

Recently, deep neural networks have been found to nearly interpolate training data but still generalize well in various applications. To help understand such a phenomenon, it has been of interest to analyze the ridge estimator and its interpolation limit in high-dimensional regression models. For this motivation, we study the ridge estimator in a rotationally sparse setting of high-dimensional linear regression, where the signal of a response is aligned with a small number, $d$, of covariates with large or spiked variances, compared with the remaining covariates with small or tail variances, \textit{after} an orthogonal transformation of the covariate vector. We establish high-probability upper and lower bounds on the out-sample and in-sample prediction errors in two distinct regimes depending on the ratio of the effective rank of tail variances over the sample size $n$. The separation of the two regimes enables us to exploit relevant concentration inequalities and derive concrete error bounds without making any oracle assumption or independent components assumption on covariate vectors. Moreover, we derive sufficient and necessary conditions which indicate that the prediction errors of ridge estimation can be of the order $O(\frac{d}{n})$ if and only if the gap between the spiked and tail variances are sufficiently large. We also compare the orders of optimal out-sample and in-sample prediction errors and find that, remarkably, the optimal out-sample prediction error may be significantly smaller than the optimal in-sample one. Finally, we present numerical experiments which empirically confirm our theoretical findings.

Over the last decade, similar to other application domains, social media content has been proven very effective in disaster informatics. However, due to the unstructured nature of the data, several challenges are associated with disaster analysis in social media content. To fully explore the potential of social media content in disaster informatics, access to relevant content and the correct geo-location information is very critical. In this paper, we propose a three-step solution to tackling these challenges. Firstly, the proposed solution aims to classify social media posts into relevant and irrelevant posts followed by the automatic extraction of location information from the posts' text through Named Entity Recognition (NER) analysis. Finally, to quickly analyze the topics covered in large volumes of social media posts, we perform topic modeling resulting in a list of top keywords, that highlight the issues discussed in the tweet. For the Relevant Classification of Twitter Posts (RCTP), we proposed a merit-based fusion framework combining the capabilities of four different models namely BERT, RoBERTa, Distil BERT, and ALBERT obtaining the highest F1-score of 0.933 on a benchmark dataset. For the Location Extraction from Twitter Text (LETT), we evaluated four models namely BERT, RoBERTa, Distil BERTA, and Electra in an NER framework obtaining the highest F1-score of 0.960. For topic modeling, we used the BERTopic library to discover the hidden topic patterns in the relevant tweets. The experimental results of all the components of the proposed end-to-end solution are very encouraging and hint at the potential of social media content and NLP in disaster management.

Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

北京阿比特科技有限公司