亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Autonomous vehicles are a growing technology that aims to enhance safety, accessibility, efficiency, and convenience through autonomous maneuvers ranging from lane change to overtaking. Overtaking is one of the most challenging maneuvers for autonomous vehicles, and current techniques for autonomous overtaking are limited to simple situations. This paper studies how to increase safety in autonomous overtaking by allowing the maneuver to be aborted. We propose a decision-making process based on a deep Q-Network to determine if and when the overtaking maneuver needs to be aborted. The proposed algorithm is empirically evaluated in simulation with varying traffic situations, indicating that the proposed method improves safety during overtaking maneuvers. Furthermore, the approach is demonstrated in real-world experiments using the autonomous shuttle iseAuto.

相關內容

Driving automation holds significant potential for enhancing traffic safety. However, effectively handling interactions with human drivers in mixed traffic remains a challenging task. Several models exist that attempt to capture human behavior in traffic interactions, often focusing on gap acceptance. However, it is not clear how models of an individual driver's gap acceptance can be translated to dynamic human-AV interactions in the context of high-speed scenarios like overtaking. In this study, we address this issue by employing a cognitive process approach to describe the dynamic interactions by the oncoming vehicle during overtaking maneuvers. Our findings reveal that by incorporating an initial decision-making bias dependent on the initial velocity into existing drift-diffusion models, we can accurately describe the qualitative patterns of overtaking gap acceptance observed previously. Our results demonstrate the potential of the cognitive process approach in modeling human overtaking behavior when the oncoming vehicle is an AV. To this end, this study contributes to the development of effective strategies for ensuring safe and efficient overtaking interactions between human drivers and AVs.

The vast increase of IoT technologies and the ever-evolving attack vectors and threat actors have increased cyber-security risks dramatically. Novel attacks can compromise IoT devices to gain access to sensitive data or control them to deploy further malicious activities. The detection of novel attacks often relies upon AI solutions. A common approach to implementing AI-based IDS in distributed IoT systems is in a centralised manner. However, this approach may violate data privacy and secrecy. In addition, centralised data collection prohibits the scale-up of IDSs. Therefore, intrusion detection solutions in IoT ecosystems need to move towards a decentralised direction. FL has attracted significant interest in recent years due to its ability to perform collaborative learning while preserving data confidentiality and locality. Nevertheless, most FL-based IDS for IoT systems are designed under unrealistic data distribution conditions. To that end, we design an experiment representative of the real world and evaluate the performance of two FL IDS implementations, one based on DNNs and another on our previous work on DBNs. For our experiments, we rely on TON-IoT, a realistic IoT network traffic dataset, associating each IP address with a single FL client. Additionally, we explore pre-training and investigate various aggregation methods to mitigate the impact of data heterogeneity. Lastly, we benchmark our approach against a centralised solution. The comparison shows that the heterogeneous nature of the data has a considerable negative impact on the model performance when trained in a distributed manner. However, in the case of a pre-trained initial global FL model, we demonstrate a performance improvement of over 20% (F1-score) when compared against a randomly initiated global model.

Surround View fisheye cameras are commonly deployed in automated driving for 360\deg{} near-field sensing around the vehicle. This work presents a multi-task visual perception network on unrectified fisheye images to enable the vehicle to sense its surrounding environment. It consists of six primary tasks necessary for an autonomous driving system: depth estimation, visual odometry, semantic segmentation, motion segmentation, object detection, and lens soiling detection. We demonstrate that the jointly trained model performs better than the respective single task versions. Our multi-task model has a shared encoder providing a significant computational advantage and has synergized decoders where tasks support each other. We propose a novel camera geometry based adaptation mechanism to encode the fisheye distortion model both at training and inference. This was crucial to enable training on the WoodScape dataset, comprised of data from different parts of the world collected by 12 different cameras mounted on three different cars with different intrinsics and viewpoints. Given that bounding boxes is not a good representation for distorted fisheye images, we also extend object detection to use a polygon with non-uniformly sampled vertices. We additionally evaluate our model on standard automotive datasets, namely KITTI and Cityscapes. We obtain the state-of-the-art results on KITTI for depth estimation and pose estimation tasks and competitive performance on the other tasks. We perform extensive ablation studies on various architecture choices and task weighting methodologies. A short video at //youtu.be/xbSjZ5OfPes provides qualitative results.

Human motion prediction is essential for the safe and smooth operation of mobile service robots and intelligent vehicles around people. Commonly used neural network-based approaches often require large amounts of complete trajectories to represent motion dynamics in complex semantically-rich spaces. This requirement may complicate deployment of physical systems in new environments, especially when the data is being collected online from onboard sensors. In this paper we explore a data-efficient alternative using maps of dynamics (MoD) to represent place-dependent multi-modal spatial motion patterns, learned from prior observations. Our approach can perform efficient human motion prediction in the long-term perspective of up to 60 seconds. We quantitatively evaluate its accuracy with limited amount of training data in comparison to an LSTM-based baseline, and qualitatively show that the predicted trajectories reflect the natural semantic properties of the environment, e.g. the locations of short- and long-term goals, navigation in narrow passages, around obstacles, etc.

The distributed flocking control of collective aerial vehicles has extraordinary advantages in scalability and reliability, \emph{etc.} However, it is still challenging to design a reliable, efficient, and responsive flocking algorithm. In this paper, a distributed predictive flocking framework is presented based on a Markov random field (MRF). The MRF is used to characterize the optimization problem that is eventually resolved by discretizing the input space. Potential functions are employed to describe the interactions between aerial vehicles and as indicators of flight performance. The dynamic constraints are taken into account in the candidate feasible trajectories which correspond to random variables. Numerical simulation shows that compared with some existing latest methods, the proposed algorithm has better-flocking cohesion and control efficiency performances. Experiments are also conducted to demonstrate the feasibility of the proposed algorithm.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of such perception system especially for the sake of path planning, motion prediction, collision avoidance, etc. Generally, stereo or monocular images with corresponding 3D point clouds are already standard layout for 3D object detection, out of which point clouds are increasingly prevalent with accurate depth information being provided. Despite existing efforts, 3D object detection on point clouds is still in its infancy due to high sparseness and irregularity of point clouds by nature, misalignment view between camera view and LiDAR bird's eye of view for modality synergies, occlusions and scale variations at long distances, etc. Recently, profound progress has been made in 3D object detection, with a large body of literature being investigated to address this vision task. As such, we present a comprehensive review of the latest progress in this field covering all the main topics including sensors, fundamentals, and the recent state-of-the-art detection methods with their pros and cons. Furthermore, we introduce metrics and provide quantitative comparisons on popular public datasets. The avenues for future work are going to be judiciously identified after an in-deep analysis of the surveyed works. Finally, we conclude this paper.

北京阿比特科技有限公司