亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The introduction of cloud computing has provided opportunities for small businesses to implement enterprise systems (ES) in their organizations and thereby improve their business processes. While there have been many studies focusing on ES implementation among medium-large sized firms, the factors that influence the implementations of ES in such firms are different to that of small firms. This teaching case discusses an implementation of a cloud enterprise resource planning (ERP) system in a small firm in the Asian region. The case illustrates factors that enabled successful implementation of a cloud ERP system in a small firm and the lessons learnt through this successful endeavor. The case study and the teaching notes are suitable for any undergraduate or postgraduate cohort, following a course in management information systems.

相關內容

A wide range of machine learning applications such as privacy-preserving learning, algorithmic fairness, and domain adaptation/generalization among others, involve learning \emph{invariant representations} of the data that aim to achieve two competing goals: (a) maximize information or accuracy with respect to a target response, and (b) maximize invariance or independence with respect to a set of protected features (e.g.\ for fairness, privacy, etc). Despite their wide applicability, theoretical understanding of the optimal tradeoffs -- with respect to accuracy, and invariance -- achievable by invariant representations is still severely lacking. In this paper, we provide precisely such an information-theoretic analysis of such tradeoffs under both classification and regression settings. We provide a geometric characterization of the accuracy and invariance achievable by any representation of the data; we term this feasible region the information plane. We provide a lower bound for this feasible region for the classification case, and an exact characterization for the regression case, which allows us to either bound or exactly characterize the Pareto optimal frontier between accuracy and invariance. Although our contributions are mainly theoretical, a key practical application of our results is in certifying the potential sub-optimality of any given representation learning algorithm for either classification or regression tasks. Our results shed new light on the fundamental interplay between accuracy and invariance, and may be useful in guiding the design of future representation learning algorithms.

For every finitary monad $T$ on sets and every endofunctor $F$ on the category of $T$-algebras we introduce the concept of an ffg-Elgot algebra for $F$, that is, an algebra admitting coherent solutions for finite systems of recursive equations with effects represented by the monad $T$. The goal is to study the existence and construction of free ffg-Elgot algebras. To this end, we investigate the locally ffg fixed point $\varphi F$, i.e. the colimit of all $F$-coalgebras with free finitely generated carrier, which is shown to be the initial ffg-Elgot algebra. This is the technical foundation for our main result: the category of ffg-Elgot algebras is monadic over the category of $T$-algebras.

Deep Neural Networks (DNNs), as a subset of Machine Learning (ML) techniques, entail that real-world data can be learned and that decisions can be made in real-time. However, their wide adoption is hindered by a number of software and hardware limitations. The existing general-purpose hardware platforms used to accelerate DNNs are facing new challenges associated with the growing amount of data and are exponentially increasing the complexity of computations. An emerging non-volatile memory (NVM) devices and processing-in-memory (PIM) paradigm is creating a new hardware architecture generation with increased computing and storage capabilities. In particular, the shift towards ReRAM-based in-memory computing has great potential in the implementation of area and power efficient inference and in training large-scale neural network architectures. These can accelerate the process of the IoT-enabled AI technologies entering our daily life. In this survey, we review the state-of-the-art ReRAM-based DNN many-core accelerators, and their superiority compared to CMOS counterparts was shown. The review covers different aspects of hardware and software realization of DNN accelerators, their present limitations, and future prospectives. In particular, comparison of the accelerators shows the need for the introduction of new performance metrics and benchmarking standards. In addition, the major concerns regarding the efficient design of accelerators include a lack of accuracy in simulation tools for software and hardware co-design.

The Intergovernmental Panel on Climate Change proposes different mitigation strategies to achieve the net emissions reductions that would be required to follow a pathway that limits global warming to 1.5{\deg}C with no or limited overshoot. The transition towards a carbon-free society goes through an inevitable increase in the share of renewable generation in the energy mix and a drastic decrease in the total consumption of fossil fuels. Therefore, this thesis studies the integration of renewables in power systems by investigating forecasting and decision-making tools. Indeed, in contrast to conventional power plants, renewable energy is subject to uncertainty. Most of the generation technologies based on renewable sources are non-dispatchable, and their production is stochastic and complex to predict in advance. A high share of renewables is challenging for power systems that have been designed and sized for dispatchable units. In this context, probabilistic forecasts, which aim at modeling the distribution of all possible future realizations, have become a vital tool to equip decision-makers, hopefully leading to better decisions in energy applications. This thesis focuses on two main research questions: (1) How to produce reliable probabilistic renewable generation forecasts, consumption, and electricity prices? (2) How to make decisions with uncertainty using probabilistic forecasts? The thesis perimeter is the energy management of "small" systems such as microgrids at a residential scale on a day-ahead basis. It is divided into two main parts to propose directions to address both research questions (1) a forecasting part; (2) a planning and control part.

The recent progress in Reinforcement Learning applications to Resource Management presents MDPs without a deeper analysis of the impacts of design decisions on agent performance. In this paper, we compare and contrast four different MDP variations, discussing their computational requirements and impacts on agent performance by means of an empirical analysis. We conclude by showing that, in our experiments, when using Multi-Layer Perceptrons as approximation function, a compact state representation allows transfer of agents between environments, and that transferred agents have good performance and outperform specialized agents in 80\% of the tested scenarios, even without retraining.

Driving is an intuitive task that requires skills, constant alertness and vigilance for unexpected events. The driving task also requires long concentration spans focusing on the entire task for prolonged periods, and sophisticated negotiation skills with other road users, including wild animals. These requirements are particularly important when approaching intersections, overtaking, giving way, merging, turning and while adhering to the vast body of road rules. Modern motor vehicles now include an array of smart assistive and autonomous driving systems capable of subsuming some, most, or in limited cases, all of the driving task. The UK Department of Transport's response to the Safe Use of Automated Lane Keeping System consultation proposes that these systems are tested for compliance with relevant traffic rules. Building these smart automotive systems requires software developers with highly technical software engineering skills, and now a lawyer's in-depth knowledge of traffic legislation as well. These skills are required to ensure the systems are able to safely perform their tasks while being observant of the law. This paper presents an approach for deconstructing the complicated legalese of traffic law and representing its requirements and flow. The approach (de)constructs road rules in legal terminology and specifies them in structured English logic that is expressed as Boolean logic for automation and Lawmaps for visualisation. We demonstrate an example using these tools leading to the construction and validation of a Bayesian Network model. We strongly believe these tools to be approachable by programmers and the general public, and capable of use in developing Artificial Intelligence to underpin motor vehicle smart systems, and in validation to ensure these systems are considerate of the law when making decisions.

A key component of mathematical reasoning is the ability to formulate interesting conjectures about a problem domain at hand. In this paper, we give a brief overview of a theory exploration system called QuickSpec, which is able to automatically discover interesting conjectures about a given set of functions. QuickSpec works by interleaving term generation with random testing to form candidate conjectures. This is made tractable by starting from small sizes and ensuring that only terms that are irreducible with respect to already discovered conjectures are considered. QuickSpec has been successfully applied to generate lemmas for automated inductive theorem proving as well as to generate specifications of functional programs. We give an overview of typical use-cases of QuickSpec, as well as demonstrating how to easily connect it to a theorem prover of the user's choice.

This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.

Machine learning about language can be improved by supplying it with specific knowledge and sources of external information. We present here a new version of the linked open data resource ConceptNet that is particularly well suited to be used with modern NLP techniques such as word embeddings. ConceptNet is a knowledge graph that connects words and phrases of natural language with labeled edges. Its knowledge is collected from many sources that include expert-created resources, crowd-sourcing, and games with a purpose. It is designed to represent the general knowledge involved in understanding language, improving natural language applications by allowing the application to better understand the meanings behind the words people use. When ConceptNet is combined with word embeddings acquired from distributional semantics (such as word2vec), it provides applications with understanding that they would not acquire from distributional semantics alone, nor from narrower resources such as WordNet or DBPedia. We demonstrate this with state-of-the-art results on intrinsic evaluations of word relatedness that translate into improvements on applications of word vectors, including solving SAT-style analogies.

This paper surveys the current state of the art in Natural Language Generation (NLG), defined as the task of generating text or speech from non-linguistic input. A survey of NLG is timely in view of the changes that the field has undergone over the past decade or so, especially in relation to new (usually data-driven) methods, as well as new applications of NLG technology. This survey therefore aims to (a) give an up-to-date synthesis of research on the core tasks in NLG and the architectures adopted in which such tasks are organised; (b) highlight a number of relatively recent research topics that have arisen partly as a result of growing synergies between NLG and other areas of artificial intelligence; (c) draw attention to the challenges in NLG evaluation, relating them to similar challenges faced in other areas of Natural Language Processing, with an emphasis on different evaluation methods and the relationships between them.

北京阿比特科技有限公司