亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Background: Outcome measures that are count variables with excessive zeros are common in health behaviors research. There is a lack of empirical data about the relative performance of prevailing statistical models when outcomes are zero-inflated, particularly compared with recently developed approaches. Methods: The current simulation study examined five commonly used analytical approaches for count outcomes, including two linear models (with outcomes on raw and log-transformed scales, respectively) and three count distribution-based models (i.e., Poisson, negative binomial, and zero-inflated Poisson (ZIP) models). We also considered the marginalized zero-inflated Poisson (MZIP) model, a novel alternative that estimates the effects on overall mean while adjusting for zero-inflation. Extensive simulations were conducted to evaluate their the statistical power and Type I error rate across various data conditions. Results: Under zero-inflation, the Poisson model failed to control the Type I error rate, resulting in higher than expected false positive results. When the intervention effects on the zero (vs. non-zero) and count parts were in the same direction, the MZIP model had the highest statistical power, followed by the linear model with outcomes on raw scale, negative binomial model, and ZIP model. The performance of a linear model with a log-transformed outcome variable was unsatisfactory. When only one of the effects on the zero (vs. non-zero) part and the count part existed, the ZIP model had the highest statistical power. Conclusions: The MZIP model demonstrated better statistical properties in detecting true intervention effects and controlling false positive results for zero-inflated count outcomes. This MZIP model may serve as an appealing analytical approach to evaluating overall intervention effects in studies with count outcomes marked by excessive zeros.

相關內容

Many experimental time series measurements share unobserved causal drivers. Examples include genes targeted by transcription factors, ocean flows influenced by large-scale atmospheric currents, and motor circuits steered by descending neurons. Reliably inferring this unseen driving force is necessary to understand the intermittent nature of top-down control schemes in diverse biological and engineered systems. Here, we introduce a new unsupervised learning algorithm that uses recurrences in time series measurements to gradually reconstruct an unobserved driving signal. Drawing on the mathematical theory of skew-product dynamical systems, we identify recurrence events shared across response time series, which implicitly define a recurrence graph with glass-like structure. As the amount or quality of observed data improves, this recurrence graph undergoes a percolation transition manifesting as weak ergodicity breaking for random walks on the induced landscape -- revealing the shared driver's dynamics, even in the presence of strongly corrupted or noisy measurements. Across several thousand random dynamical systems, we empirically quantify the dependence of reconstruction accuracy on the rate of information transfer from a chaotic driver to the response systems, and we find that effective reconstruction proceeds through gradual approximation of the driver's dominant orbit topology. Through extensive benchmarks against classical and neural-network-based signal processing techniques, we demonstrate our method's strong ability to extract causal driving signals from diverse real-world datasets spanning ecology, genomics, fluid dynamics, and physiology.

Current ethical debates on the use of artificial intelligence (AI) in health care treat AI as a product of technology in three ways: First, by assessing risks and potential benefits of currently developed AI-enabled products with ethical checklists; second, by proposing ex ante lists of ethical values seen as relevant for the design and development of assisting technology, and third, by promoting AI technology to use moral reasoning as part of the automation process. Subsequently, we propose a fourth approach to AI, namely as a methodological tool to assist ethical reflection. We provide a concept of an AI-simulation informed by three separate elements: 1) stochastic human behavior models based on behavioral data for simulating realistic settings, 2) qualitative empirical data on value statements regarding internal policy, and 3) visualization components that aid in understanding the impact of changes in these variables. The potential of this approach is to inform an interdisciplinary field about anticipated ethical challenges or ethical trade-offs in concrete settings and, hence, to spark a re-evaluation of design and implementation plans. This may be particularly useful for applications that deal with extremely complex values and behavior or with limitations on the communication resources of affected persons (e.g., persons with dementia care or for care of persons with cognitive impairment). Simulation does not replace ethical reflection but does allow for detailed, context-sensitive analysis during the design process and prior to implementation. Finally, we discuss the inherently quantitative methods of analysis afforded by stochastic simulations as well as the potential for ethical discussions and how simulations with AI can improve traditional forms of thought experiments and future-oriented technology assessment.

Model merging (e.g., via interpolation or task arithmetic) fuses multiple models trained on different tasks to generate a multi-task solution. The technique has been proven successful in previous studies, where the models are trained on similar tasks and with the same initialization. In this paper, we expand on this concept to a multimodal setup by merging transformers trained on different modalities. Furthermore, we conduct our study for a novel goal where we can merge vision, language, and cross-modal transformers of a modality-specific architecture to create a parameter-efficient modality-agnostic architecture. Through comprehensive experiments, we systematically investigate the key factors impacting model performance after merging, including initialization, merging mechanisms, and model architectures. Our analysis leads to an effective training recipe for matching the performance of the modality-agnostic baseline (i.e. pre-trained from scratch) via model merging. Our code is available at: //github.com/ylsung/vl-merging

Assessing causal effects in the presence of unmeasured confounding is a challenging problem. Although auxiliary variables, such as instrumental variables, are commonly used to identify causal effects, they are often unavailable in practice due to stringent and untestable conditions. To address this issue, previous researches have utilized linear structural equation models to show that the causal effect can be identifiable when noise variables of the treatment and outcome are both non-Gaussian. In this paper, we investigate the problem of identifying the causal effect using auxiliary covariates and non-Gaussianity from the treatment. Our key idea is to characterize the impact of unmeasured confounders using an observed covariate, assuming they are all Gaussian. The auxiliary covariate can be an invalid instrument or an invalid proxy variable. We demonstrate that the causal effect can be identified using this measured covariate, even when the only source of non-Gaussianity comes from the treatment. We then extend the identification results to the multi-treatment setting and provide sufficient conditions for identification. Based on our identification results, we propose a simple and efficient procedure for calculating causal effects and show the $\sqrt{n}$-consistency of the proposed estimator. Finally, we evaluate the performance of our estimator through simulation studies and an application.

Stratification in both the design and analysis of randomized clinical trials is common. Despite features in automated randomization systems to re-confirm the stratifying variables, incorrect values of these variables may be entered. These errors are often detected during subsequent data collection and verification. Questions remain about whether to use the mis-reported initial stratification or the corrected values in subsequent analyses. It is shown that the likelihood function resulting from the design of randomized clinical trials supports the use of the corrected values. New definitions are proposed that characterize misclassification errors as `ignorable' and `non-ignorable'. Ignorable errors may depend on the correct strata and any other modeled baseline covariates, but they are otherwise unrelated to potential treatment outcomes. Data management review suggests most misclassification errors are arbitrarily produced by distracted investigators, so they are ignorable or at most weakly dependent on measured and unmeasured baseline covariates. Ignorable misclassification errors may produce a small increase in standard errors, but other properties of the planned analyses are unchanged (e.g., unbiasedness, confidence interval coverage). It is shown that unbiased linear estimation in the absence of misclassification errors remains unbiased when there are non-ignorable misclassification errors, and the corresponding confidence intervals based on the corrected strata values are conservative.

Counterfactual learning to rank (CLTR) relies on exposure-based inverse propensity scoring (IPS), a LTR-specific adaptation of IPS to correct for position bias. While IPS can provide unbiased and consistent estimates, it often suffers from high variance. Especially when little click data is available, this variance can cause CLTR to learn sub-optimal ranking behavior. Consequently, existing CLTR methods bring significant risks with them, as naively deploying their models can result in very negative user experiences. We introduce a novel risk-aware CLTR method with theoretical guarantees for safe deployment. We apply a novel exposure-based concept of risk regularization to IPS estimation for LTR. Our risk regularization penalizes the mismatch between the ranking behavior of a learned model and a given safe model. Thereby, it ensures that learned ranking models stay close to a trusted model, when there is high uncertainty in IPS estimation, which greatly reduces the risks during deployment. Our experimental results demonstrate the efficacy of our proposed method, which is effective at avoiding initial periods of bad performance when little data is available, while also maintaining high performance at convergence. For the CLTR field, our novel exposure-based risk minimization method enables practitioners to adopt CLTR methods in a safer manner that mitigates many of the risks attached to previous methods.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.

北京阿比特科技有限公司