This paper considers the challenges that Large Language Models (LLMs) face when reasoning over text that includes information involving uncertainty explicitly quantified via probability values. This type of reasoning is relevant to a variety of contexts ranging from everyday conversations to medical decision-making. Despite improvements in the mathematical reasoning capabilities of LLMs, they still exhibit significant difficulties when it comes to probabilistic reasoning. To deal with this problem, we first introduce the Bayesian Linguistic Inference Dataset (BLInD), a new dataset specifically designed to test the probabilistic reasoning capabilities of LLMs. We then leverage this new dataset to thoroughly illustrate the specific limitations of LLMs for tasks involving probabilistic reasoning and present several strategies that map the problem to different formal representations, including Python code, probabilistic inference algorithms, and probabilistic logical programming. We conclude by providing an evaluation of our methods on BLInD and on an adaptation of a causal reasoning question-answering dataset, which further shows their practical effectiveness.
In this paper, we propose a novel approach to Bayesian experimental design for non-exchangeable data that formulates it as risk-sensitive policy optimization. We develop the Inside-Out SMC$^2$ algorithm, a nested sequential Monte Carlo technique to infer optimal designs, and embed it into a particle Markov chain Monte Carlo framework to perform gradient-based policy amortization. Our approach is distinct from other amortized experimental design techniques, as it does not rely on contrastive estimators. Numerical validation on a set of dynamical systems showcases the efficacy of our method in comparison to other state-of-the-art strategies.
Recent Vision-Language Pre-training (VLP) models have demonstrated significant advancements. Nevertheless, these models heavily rely on image-text pairs that capture only coarse and global information of an image, leading to a limitation in their regional understanding ability. In this work, we introduce \textbf{RegionVLM}, equipped with explicit regional modeling capabilities, allowing them to understand user-indicated image regions. To achieve this, we design a simple yet innovative architecture, requiring no modifications to the model architecture or objective function. Additionally, we leverage a dataset that contains a novel source of information, namely Localized Narratives, which has been overlooked in previous VLP research. Our experiments demonstrate that our single generalist model not only achieves an interactive dialogue system but also exhibits superior performance on various zero-shot region understanding tasks, without compromising its ability for global image understanding.
This paper proposes a Federated Learning Code Smell Detection (FedCSD) approach that allows organizations to collaboratively train federated ML models while preserving their data privacy. These assertions have been supported by three experiments that have significantly leveraged three manually validated datasets aimed at detecting and examining different code smell scenarios. In experiment 1, which was concerned with a centralized training experiment, dataset two achieved the lowest accuracy (92.30%) with fewer smells, while datasets one and three achieved the highest accuracy with a slight difference (98.90% and 99.5%, respectively). This was followed by experiment 2, which was concerned with cross-evaluation, where each ML model was trained using one dataset, which was then evaluated over the other two datasets. Results from this experiment show a significant drop in the model's accuracy (lowest accuracy: 63.80\%) where fewer smells exist in the training dataset, which has a noticeable reflection (technical debt) on the model's performance. Finally, the last and third experiments evaluate our approach by splitting the dataset into 10 companies. The ML model was trained on the company's site, then all model-updated weights were transferred to the server. Ultimately, an accuracy of 98.34% was achieved by the global model that has been trained using 10 companies for 100 training rounds. The results reveal a slight difference in the global model's accuracy compared to the highest accuracy of the centralized model, which can be ignored in favour of the global model's comprehensive knowledge, lower training cost, preservation of data privacy, and avoidance of the technical debt problem.
This paper introduces a novel hierarchical Bayesian model specifically designed to address challenges in Inverse Uncertainty Quantification (IUQ) for time-dependent problems in nuclear Thermal Hydraulics (TH) systems. The unique characteristics of time-dependent data, such as high dimensionality and correlation in model outputs requires special attention in the IUQ process. By integrating Gaussian Processes (GP) with Principal Component Analysis (PCA), we efficiently construct surrogate models that effectively handle the complexity of dynamic TH systems. Additionally, we incorporate Neural Network (NN) models for time series regression, enhancing the computational accuracy and facilitating derivative calculations for efficient posterior sampling using the Hamiltonian Monte Carlo Method - No U-Turn Sampler (NUTS). We demonstrate the effectiveness of this hierarchical Bayesian approach using the transient experiments in the PSBT benchmark. Our results show improved estimates of Physical Model Parameters' posterior distributions and a reduced tendency for over-fitting, compared to conventional single-level Bayesian models. This approach offers a promising framework for extending IUQ to more complex, time-dependent problems.
The classical tests in the instrumental variable model can behave arbitrarily if the data is contaminated. For instance, one outlying observation can be enough to change the outcome of a test. We develop a framework to construct testing procedures that are robust to weak instruments, outliers and heavy-tailed errors in the instrumental variable model. The framework is constructed upon M-estimators. By deriving the influence functions of the classical weak instrument robust tests, such as the Anderson-Rubin test, K-test and the conditional likelihood ratio (CLR) test, we prove their unbounded sensitivity to infinitesimal contamination. Therefore, we construct contamination resistant/robust alternatives. In particular, we show how to construct a robust CLR statistic based on Mallows type M-estimators and show that its asymptotic distribution is the same as that of the (classical) CLR statistic. The theoretical results are corroborated by a simulation study. Finally, we revisit three empirical studies affected by outliers and demonstrate how the new robust tests can be used in practice.
This paper discusses the development of synthetic cohomology in Homotopy Type Theory (HoTT), as well as its computer formalisation. The objectives of this paper are (1) to generalise previous work on integral cohomology in HoTT by the current authors and Brunerie (2022) to cohomology with arbitrary coefficients and (2) to provide the mathematical details of, as well as extend, results underpinning the computer formalisation of cohomology rings by the current authors and Lamiaux (2023). With respect to objective (1), we provide new direct definitions of the cohomology group operations and of the cup product, which, just as in (Brunerie et al., 2022), enable significant simplifications of many earlier proofs in synthetic cohomology theory. In particular, the new definition of the cup product allows us to give the first complete formalisation of the axioms needed to turn the cohomology groups into a graded commutative ring. We also establish that this cohomology theory satisfies the HoTT formulation of the Eilenberg-Steenrod axioms for cohomology and study the classical Mayer-Vietoris and Gysin sequences. With respect to objective (2), we characterise the cohomology groups and rings of various spaces, including the spheres, torus, Klein bottle, real/complex projective planes, and infinite real projective space. All results have been formalised in Cubical Agda and we obtain multiple new numbers, similar to the famous `Brunerie number', which can be used as benchmarks for computational implementations of HoTT. Some of these numbers are infeasible to compute in Cubical Agda and hence provide new computational challenges and open problems which are much easier to define than the original Brunerie number.
This research investigates User Experience (UX) issues in dataset search platform interfaces, targeting Google Dataset Search and data.europa.eu. It focuses on 6 areas within UX: Initial Interaction, Search Process, Dataset Exploration, Filtering and Sorting, Dataset Actions, and Assistance and Feedback. The evaluation method combines 'The Pandemic Puzzle' user task, think-aloud methods, and demographic and post-task questionnaires. 29 strengths and 63 weaknesses were collected from 19 participants involved in roles within technology firm or academia. While certain insights are specific to particular platforms, most are derived from features commonly observed in dataset search platforms across a variety of fields, implying that our findings are broadly applicable. Observations from commonly found features in dataset search platforms across various fields have led to the development of 10 new design prototypes. Unlike literature retrieval, dataset retrieval involves a significant focus on metadata accessibility and quality, each element of which can impact decision-making. To address issues like reading fatigue from metadata presentation, inefficient methods for results searching, filtering, and selection, along with other unresolved user-centric issues on current platforms. These prototypes concentrate on enhancing metadata-related features. They include a redesigned homepage, an improved search bar, better sorting options, an enhanced search result display, a metadata comparison tool, and a navigation guide. Our aim is to improve usability for a wide range of users, including both developers and researchers.
This paper presents a formation control approach for contactless gesture-based Human-Swarm Interaction (HSI) between a team of multi-rotor Unmanned Aerial Vehicles (UAVs) and a human worker. The approach is intended for monitoring the safety of human workers, especially those working at heights. In the proposed dynamic formation scheme, one UAV acts as the leader of the formation and is equipped with sensors for human worker detection and gesture recognition. The follower UAVs maintain a predetermined formation relative to the worker's position, thereby providing additional perspectives of the monitored scene. Hand gestures allow the human worker to specify movements and action commands for the UAV team and initiate other mission-related commands without the need for an additional communication channel or specific markers. Together with a novel unified human detection and tracking algorithm, human pose estimation approach and gesture detection pipeline, the proposed approach forms a first instance of an HSI system incorporating all these modules onboard real-world UAVs. Simulations and field experiments with three UAVs and a human worker in a mock-up scenario showcase the effectiveness and responsiveness of the proposed approach.
Contextual embeddings, such as ELMo and BERT, move beyond global word representations like Word2Vec and achieve ground-breaking performance on a wide range of natural language processing tasks. Contextual embeddings assign each word a representation based on its context, thereby capturing uses of words across varied contexts and encoding knowledge that transfers across languages. In this survey, we review existing contextual embedding models, cross-lingual polyglot pre-training, the application of contextual embeddings in downstream tasks, model compression, and model analyses.
In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.