As customized accelerator design has become increasingly popular to keep up with the demand for high performance computing, it poses challenges for modern simulator design to adapt to such a large variety of accelerators. Existing simulators tend to two extremes: low-level and general approaches, such as RTL simulation, that can model any hardware but require substantial effort and long execution times; and higher-level application-specific models that can be much faster and easier to use but require one-off engineering effort. This work proposes a compiler-driven simulation workflow that can model configurable hardware accelerator. The key idea is to separate structure representation from simulation by developing an intermediate language that can flexibly represent a wide variety of hardware constructs. We design the Event Queue (EQueue) dialect of MLIR, a dialect that can model arbitrary hardware accelerators with explicit data movement and distributed event-based control; we also implement a generic simulation engine to model EQueue programs with hybrid MLIR dialects representing different abstraction levels. We demonstrate two case studies of EQueue-implemented accelerators: the systolic array of convolution and SIMD processors in a modern FPGA. In the former we show EQueue simulation is as accurate as a state-of-the-art simulator, while offering higher extensibility and lower iteration cost via compiler passes. In the latter we demonstrate our simulation flow can guide designer efficiently improve their design using visualizable simulation outputs.
Industrial Control Systems (ICSs) rely on insecure protocols and devices to monitor and operate critical infrastructure. Prior work has demonstrated that powerful attackers with detailed system knowledge can manipulate exchanged sensor data to deteriorate performance of the process, even leading to full shutdowns of plants. Identifying those attacks requires iterating over all possible sensor values, and running detailed system simulation or analysis to identify optimal attacks. That setup allows adversaries to identify attacks that are most impactful when applied on the system for the first time, before the system operators become aware of the manipulations. In this work, we investigate if constrained attackers without detailed system knowledge and simulators can identify comparable attacks. In particular, the attacker only requires abstract knowledge on general information flow in the plant, instead of precise algorithms, operating parameters, process models, or simulators. We propose an approach that allows single-shot attacks, i.e., near-optimal attacks that are reliably shutting down a system on the first try. The approach is applied and validated on two use cases, and demonstrated to achieve comparable results to prior work, which relied on detailed system information and simulations.
Runtime verification or runtime monitoring equips safety-critical cyber-physical systems to augment design assurance measures and ensure operational safety and security. Cyber-physical systems have interaction failures, attack surfaces, and attack vectors resulting in unanticipated hazards and loss scenarios. These interaction failures pose challenges to runtime verification regarding monitoring specifications and monitoring placements for in-time detection of hazards. We develop a well-formed workflow model that connects system theoretic process analysis, commonly referred to as STPA, hazard causation information to lower-level runtime monitoring to detect hazards at the operational phase. Specifically, our model follows the DepDevOps paradigm to provide evidence and insights to runtime monitoring on what to monitor, where to monitor, and the monitoring context. We demonstrate and evaluate the value of multilevel monitors by injecting hazards on an autonomous emergency braking system model.
Reinforcement learning (RL) has shown promise as a tool for engineering safe, ethical, or legal behaviour in autonomous agents. Its use typically relies on assigning punishments to state-action pairs that constitute unsafe or unethical choices. Despite this assignment being a crucial step in this approach, however, there has been limited discussion on generalizing the process of selecting punishments and deciding where to apply them. In this paper, we adopt an approach that leverages an existing framework -- the normative supervisor of (Neufeld et al., 2021) -- during training. This normative supervisor is used to dynamically translate states and the applicable normative system into defeasible deontic logic theories, feed these theories to a theorem prover, and use the conclusions derived to decide whether or not to assign a punishment to the agent. We use multi-objective RL (MORL) to balance the ethical objective of avoiding violations with a non-ethical objective; we will demonstrate that our approach works for a multiplicity of MORL techniques, and show that it is effective regardless of the magnitude of the punishment we assign.
Developing controllers for obstacle avoidance between polytopes is a challenging and necessary problem for navigation in tight spaces. Traditional approaches can only formulate the obstacle avoidance problem as an offline optimization problem. To address these challenges, we propose a duality-based safety-critical optimal control using nonsmooth control barrier functions for obstacle avoidance between polytopes, which can be solved in real-time with a QP-based optimization problem. A dual optimization problem is introduced to represent the minimum distance between polytopes and the Lagrangian function for the dual form is applied to construct a control barrier function. We validate the obstacle avoidance with the proposed dual formulation for L-shaped (sofa-shaped) controlled robot in a corridor environment. We demonstrate real-time tight obstacle avoidance with non-conservative maneuvers on a moving sofa (piano) problem with nonlinear dynamics.
Collision avoidance is a widely investigated topic in robotic applications. When applying collision avoidance techniques to a mobile robot, how to deal with the spatial structure of the robot still remains a challenge. In this paper, we design a configuration-aware safe control law by solving a Quadratic Programming (QP) with designed Control Barrier Functions (CBFs) constraints, which can safely navigate a mobile robotic arm to a desired region while avoiding collision with environmental obstacles. The advantage of our approach is that it correctly and in an elegant way incorporates the spatial structure of the mobile robotic arm. This is achieved by merging geometric restrictions among mobile robotic arm links into CBFs constraints. Simulations on a rigid rod and the modeled mobile robotic arm are performed to verify the feasibility and time-efficiency of proposed method. Numerical results about the time consuming for different degrees of freedom illustrate that our method scales well with dimension.
In this paper, tests of symmetry for bivariate copulas are introduced and studied using empirical Bernstein copula. Three statistics are proposed and their asymptotic properties are established. Besides, a multiplier bootstrap Bernstein version is investigated for implementation purpose. Simulation study and real data application showed that the Bernstein tests outperform the tests based on the empirical copula.
We propose a novel concise function representation for graphical models, a central theoretical framework that provides the basis for many reasoning tasks. We then show how we exploit our concise representation based on deterministic finite state automata within Bucket Elimination (BE), a general approach based on the concept of variable elimination that can be used to solve many inference and optimisation tasks, such as most probable explanation and constrained optimisation. We denote our version of BE as FABE. By using our concise representation within FABE, we dramatically improve the performance of BE in terms of runtime and memory requirements. Results achieved by comparing FABE with state of the art approaches for most probable explanation (i.e., recursive best-first and structured message passing) and constrained optimisation (i.e., CPLEX, GUROBI, and toulbar2) following an established methodology confirm the efficacy of our concise function representation, showing runtime improvements of up to 5 orders of magnitude in our tests.
In this work, we present CEDR, a Compiler-integrated, Extensible Domain Specific System on Chip Runtime ecosystem to facilitate research towards addressing the challenges of architecture, system software and application development with distinct plug-and-play integration points in a unified compile time and run time workflow. We demonstrate the utility of CEDR on the Xilinx Zynq MPSoC-ZCU102 for evaluating performance of pre-silicon hardware in the trade space of SoC configuration, scheduling policy and workload complexity based on dynamically arriving workload scenarios composed of real-life signal processing applications scaling to thousands of application instances with FFT and matrix multiply accelerators. We provide insights into the trade-offs present in this design space through a number of distinct case studies. CEDR is portable and has been deployed and validated on Odroid-XU3, X86 and Nvidia Jetson Xavier based SoC platforms. Taken together, CEDR is a capable environment for enabling research in exploring the boundaries of productive application development, resource management heuristic development, and hardware configuration analysis for heterogeneous architectures.
Present-day atomistic simulations generate long trajectories of ever more complex systems. Analyzing these data, discovering metastable states, and uncovering their nature is becoming increasingly challenging. In this paper, we first use the variational approach to conformation dynamics to discover the slowest dynamical modes of the simulations. This allows the different metastable states of the system to be located and organized hierarchically. The physical descriptors that characterize metastable states are discovered by means of a machine learning method. We show in the cases of two proteins, Chignolin and Bovine Pancreatic Trypsin Inhibitor, how such analysis can be effortlessly performed in a matter of seconds. Another strength of our approach is that it can be applied to the analysis of both unbiased and biased simulations.
We present a method for the control of robot swarms which allows the shaping and the translation of patterns of simple robots ("smart particles"), using two types of devices. These two types represent a hierarchy: a larger group of simple, oblivious robots (which we call the workers) that is governed by simple local attraction forces, and a smaller group (the guides) with sufficient mission knowledge to create and maintain a desired pattern by operating on the local forces of the former. This framework exploits the knowledge of the guides, which coordinate to shape the workers like smart particles by changing their interaction parameters. We study the approach with a large scale simulation experiment in a physics based simulator with up to 1000 robots forming three different patterns. Our experiments reveal that the approach scales well with increasing robot numbers, and presents little pattern distortion for a set of target moving shapes. We evaluate the approach on a physical swarm of robots that use visual inertial odometry to compute their relative positions and obtain results that are comparable with simulation. This work lays foundation for designing and coordinating configurable smart particles, with applications in smart materials and nanomedicine.