亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies a new variant of the stochastic multi-armed bandits problem where auxiliary information about the arm rewards is available in the form of control variates. In many applications like queuing and wireless networks, the arm rewards are functions of some exogenous variables. The mean values of these variables are known a priori from historical data and can be used as control variates. Leveraging the theory of control variates, we obtain mean estimates with smaller variance and tighter confidence bounds. We develop an improved upper confidence bound based algorithm named UCB-CV and characterize the regret bounds in terms of the correlation between rewards and control variates when they follow a multivariate normal distribution. We also extend UCB-CV to other distributions using resampling methods like Jackknifing and Splitting. Experiments on synthetic problem instances validate performance guarantees of the proposed algorithms.

相關內容

Measuring the predictability and complexity of time series using entropy is essential tool de-signing and controlling a nonlinear system. However, the existing methods have some drawbacks related to the strong dependence of entropy on the parameters of the methods. To overcome these difficulties, this study proposes a new method for estimating the entropy of a time series using the LogNNet neural network model. The LogNNet reservoir matrix is filled with time series elements according to our algorithm. The accuracy of the classification of images from the MNIST-10 database is considered as the entropy measure and denoted by NNetEn. The novelty of entropy calculation is that the time series is involved in mixing the input information in the res-ervoir. Greater complexity in the time series leads to a higher classification accuracy and higher NNetEn values. We introduce a new time series characteristic called time series learning inertia that determines the learning rate of the neural network. The robustness and efficiency of the method is verified on chaotic, periodic, random, binary, and constant time series. The comparison of NNetEn with other methods of entropy estimation demonstrates that our method is more robust and accurate and can be widely used in practice.

We consider the fixed-budget best arm identification problem in two-armed Gaussian bandits with unknown variances. The tightest lower bound on the complexity and an algorithm whose performance guarantee matches the lower bound have long been open problems when the variances are unknown and when the algorithm is agnostic to the optimal proportion of the arm draws. In this paper, we propose a strategy comprising a sampling rule with randomized sampling (RS) following the estimated target allocation probabilities of arm draws and a recommendation rule using the augmented inverse probability weighting (AIPW) estimator, which is often used in the causal inference literature. We refer to our strategy as the RS-AIPW strategy. In the theoretical analysis, we first derive a large deviation principle for martingales, which can be used when the second moment converges in mean, and apply it to our proposed strategy. Then, we show that the proposed strategy is asymptotically optimal in the sense that the probability of misidentification achieves the lower bound by Kaufmann et al. (2016) when the sample size becomes infinitely large and the gap between the two arms goes to zero.

We study regression discontinuity designs in which many covariates, possibly much more than the number of observations, are available. We consider a two-step algorithm which first selects the set of covariates to be used through a localized Lasso-type procedure, and then, in a second step, estimates the treatment effect by including the selected covariates into the usual local linear estimator. We provide an in-depth analysis of the algorithm's theoretical properties, showing that, under an approximate sparsity condition, the resulting estimator is asymptotically normal, with asymptotic bias and variance that are conceptually similar to those obtained in low-dimensional settings. Bandwidth selection and inference can be carried out using standard methods. We also provide simulations and an empirical application.

This paper details the theory and implementation behind practically ensuring safety of remotely piloted racing drones. We demonstrate robust and practical safety guarantees on a 7" racing drone at speeds exceeding 100 km/h, utilizing only online computations on a 10 gram micro-controller. To achieve this goal, we utilize the framework of control barrier functions (CBFs) which give guaranteed safety encoded as forward set invariance. To make this methodology practically applicable, we present an implicitly defined CBF which leverages backup controllers to enable gradient-free evaluations that ensure safety. The method applied to hardware results in smooth, minimally conservative alterations of the pilots' desired inputs, enabling them to push the limits of their drone without fear of crashing. Moreover, the method works in conjunction with the preexisting flight controller, resulting in unaltered flight when there are no nearby safety risks. Additional benefits include safety and stability of the drone when losing line-of-sight or in the event of radio failure.

We propose a new method for multivariate response regression and covariance estimation when elements of the response vector are of mixed types, for example some continuous and some discrete. Our method is based on a model which assumes the observable mixed-type response vector is connected to a latent multivariate normal response linear regression through a link function. We explore the properties of this model and show its parameters are identifiable under reasonable conditions. We impose no parametric restrictions on the covariance of the latent normal other than positive definiteness, thereby avoiding assumptions about unobservable variables which can be difficult to verify in practice. To accommodate this generality, we propose a novel algorithm for approximate maximum likelihood estimation that works "off-the-shelf" with many different combinations of response types, and which scales well in the dimension of the response vector. Our method typically gives better predictions and parameter estimates than fitting separate models for the different response types and allows for approximate likelihood ratio testing of relevant hypotheses such as independence of responses. The usefulness of the proposed method is illustrated in simulations; and one biomedical and one genomic data example.

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.

We study the problem of learning a latent variable model from a stream of data. Latent variable models are popular in practice because they can explain observed data in terms of unobserved concepts. These models have been traditionally studied in the offline setting. The online EM is arguably the most popular algorithm for learning latent variable models online. Although it is computationally efficient, it typically converges to a local optimum. In this work, we develop a new online learning algorithm for latent variable models, which we call SpectralLeader. SpectralLeader always converges to the global optimum, and we derive a $O(\sqrt{n})$ upper bound up to log factors on its $n$-step regret in the bag-of-words model. We show that SpectralLeader performs similarly to or better than the online EM with tuned hyper-parameters, in both synthetic and real-world experiments.

We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.

In this paper we introduce a covariance framework for the analysis of EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. We perform a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. Apart from that, we illustrate our method on real EEG and MEG data sets. The proposed covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed for accurate dipole localization, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, such as in combined EEG/fMRI experiments in which the correlation between EEG and fMRI signals is investigated.

北京阿比特科技有限公司