亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Pathologists need to combine information from differently stained pathology slices for accurate diagnosis. Deformable image registration is a necessary technique for fusing multi-modal pathology slices. This paper proposes a hybrid deep feature-based deformable image registration framework for stained pathology samples. We first extract dense feature points via the detector-based and detector-free deep learning feature networks and perform points matching. Then, to further reduce false matches, an outlier detection method combining the isolation forest statistical model and the local affine correction model is proposed. Finally, the interpolation method generates the deformable vector field for pathology image registration based on the above matching points. We evaluate our method on the dataset of the Non-rigid Histology Image Registration (ANHIR) challenge, which is co-organized with the IEEE ISBI 2019 conference. Our technique outperforms the traditional approaches by 17% with the Average-Average registration target error (rTRE) reaching 0.0034. The proposed method achieved state-of-the-art performance and ranked 1st in evaluating the test dataset. The proposed hybrid deep feature-based registration method can potentially become a reliable method for pathology image registration.

相關內容

Out-of-distribution (OOD) detection is a critical requirement for the deployment of deep neural networks. This paper introduces the HEAT model, a new post-hoc OOD detection method estimating the density of in-distribution (ID) samples using hybrid energy-based models (EBM) in the feature space of a pre-trained backbone. HEAT complements prior density estimators of the ID density, e.g. parametric models like the Gaussian Mixture Model (GMM), to provide an accurate yet robust density estimation. A second contribution is to leverage the EBM framework to provide a unified density estimation and to compose several energy terms. Extensive experiments demonstrate the significance of the two contributions. HEAT sets new state-of-the-art OOD detection results on the CIFAR-10 / CIFAR-100 benchmark as well as on the large-scale Imagenet benchmark. The code is available at: //github.com/MarcLafon/heat_ood.

This article presents an innovative approach for developing an efficient reduced-order model to study the dispersion of urban air pollutants. The need for real-time air quality monitoring has become increasingly important, given the rise in pollutant emissions due to urbanization and its adverse effects on human health. The proposed methodology involves solving the linear advection-diffusion problem, where the solution of the Reynolds-averaged Navier-Stokes equations gives the convective field. At the same time, the source term consists of an empirical time series. However, the computational requirements of this approach, including microscale spatial resolution, repeated evaluation, and low time scale, necessitate the use of high-performance computing facilities, which can be a bottleneck for real-time monitoring. To address this challenge, a problem-specific methodology was developed that leverages a data-driven approach based on Proper Orthogonal Decomposition with regression (POD-R) coupled with Galerkin projection (POD-G) endorsed with the discrete empirical interpolation method (DEIM). The proposed method employs a feedforward neural network to non-intrusively retrieve the reduced-order convective operator required for online evaluation. The numerical framework was validated on synthetic emissions and real wind measurements. The results demonstrate that the proposed approach significantly reduces the computational burden of the traditional approach and is suitable for real-time air quality monitoring. Overall, the study advances the field of reduced order modeling and highlights the potential of data-driven approaches in environmental modeling and large-scale simulations.

Efficient detectors for edge devices are often optimized for metrics like parameters or speed counts, which remain weak correlation with the energy of detectors. However, among vision applications of convolutional neural networks (CNNs), some, such as always-on surveillance cameras, are critical for energy constraints. This paper aims to serve as a baseline by designing detectors to reach tradeoffs between energy and performance from two perspectives: 1) We extensively analyze various CNNs to identify low-energy architectures, including the selection of activation functions, convolutions operators, and feature fusion structures on necks. These underappreciated details in past works seriously affect the energy consumption of detectors; 2) To break through the dilemmatic energy-performance problem, we propose a balanced detector driven by energy using discovered low-energy components named \textit{FemtoDet}. In addition to the novel construction, we further improve FemtoDet by considering convolutions and training strategy optimizations. Specifically, we develop a new instance boundary enhancement (IBE) module for convolution optimization to overcome the contradiction between the limited capacity of CNNs and detection tasks in diverse spatial representations, and propose a recursive warm-restart (RecWR) for optimizing training strategy to escape the sub-optimization of light-weight detectors, considering the data shift produced in popular augmentations. As a result, FemtoDet with only 68.77k parameters achieves a competitive score of 46.3 AP50 on PASCAL VOC and power of 7.83W on RTX 3090. Extensive experiments on COCO and TJU-DHD datasets indicate that the proposed method achieves competitive results in diverse scenes.

In recent years, deep learning has been successfully applied in various scientific domains. Following these promising results and performances, it has recently also started being evaluated in the domain of radio astronomy. In particular, since radio astronomy is entering the Big Data era, with the advent of the largest telescope in the world - the Square Kilometre Array (SKA), the task of automatic object detection and instance segmentation is crucial for source finding and analysis. In this work, we explore the performance of the most affirmed deep learning approaches, applied to astronomical images obtained by radio interferometric instrumentation, to solve the task of automatic source detection. This is carried out by applying models designed to accomplish two different kinds of tasks: object detection and semantic segmentation. The goal is to provide an overview of existing techniques, in terms of prediction performance and computational efficiency, to scientists in the astrophysics community who would like to employ machine learning in their research.

We continue our investigation of finite deformation linear viscoelastodynamics by focusing on constructing accurate and reliable numerical schemes. The concrete thermomechanical foundation developed in the previous study paves the way for pursuing discrete formulations with critical physical and mathematical structures preserved. Energy stability, momentum conservation, and temporal accuracy constitute the primary factors in our algorithm design. For inelastic materials, the directionality condition, a property for the stress to be energy consistent, is extended with the dissipation effect taken into account. Moreover, the integration of the constitutive relations calls for an algorithm design of the internal state variables and their conjugate variables. A directionality condition for the conjugate variables is introduced as an indispensable ingredient for ensuring physically correct numerical dissipation. By leveraging the particular structure of the configurational free energy, a set of update formulas for the internal state variables is obtained. Detailed analysis reveals that the overall discrete schemes are energy-momentum consistent and achieve first- and second-order accuracy in time, respectively. Numerical examples are provided to justify the appealing features of the proposed methodology.

In this paper, we focus on an under-explored issue of biased activation in prior weakly-supervised object localization methods based on Class Activation Mapping (CAM). We analyze the cause of this problem from a causal view and attribute it to the co-occurring background confounders. Following this insight, we propose a novel Counterfactual Co-occurring Learning (CCL) paradigm to synthesize the counterfactual representations via coupling constant foreground and unrealized backgrounds in order to cut off their co-occurring relationship. Specifically, we design a new network structure called Counterfactual-CAM, which embeds the counterfactual representation perturbation mechanism into the vanilla CAM-based model. This mechanism is responsible for decoupling foreground as well as background and synthesizing the counterfactual representations. By training the detection model with these synthesized representations, we compel the model to focus on the constant foreground content while minimizing the influence of distracting co-occurring background. To our best knowledge, it is the first attempt in this direction. Extensive experiments on several benchmarks demonstrate that Counterfactual-CAM successfully mitigates the biased activation problem, achieving improved object localization accuracy.

We show how probabilistic numerics can be used to convert an initial value problem into a Gauss--Markov process parametrised by the dynamics of the initial value problem. Consequently, the often difficult problem of parameter estimation in ordinary differential equations is reduced to hyperparameter estimation in Gauss--Markov regression, which tends to be considerably easier. The method's relation and benefits in comparison to classical numerical integration and gradient matching approaches is elucidated. In particular, the method can, in contrast to gradient matching, handle partial observations, and has certain routes for escaping local optima not available to classical numerical integration. Experimental results demonstrate that the method is on par or moderately better than competing approaches.

Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.

In recent years a vast amount of visual content has been generated and shared from various fields, such as social media platforms, medical images, and robotics. This abundance of content creation and sharing has introduced new challenges. In particular, searching databases for similar content, i.e. content based image retrieval (CBIR), is a long-established research area, and more efficient and accurate methods are needed for real time retrieval. Artificial intelligence has made progress in CBIR and has significantly facilitated the process of intelligent search. In this survey we organize and review recent CBIR works that are developed based on deep learning algorithms and techniques, including insights and techniques from recent papers. We identify and present the commonly-used databases, benchmarks, and evaluation methods used in the field. We collect common challenges and propose promising future directions. More specifically, we focus on image retrieval with deep learning and organize the state of the art methods according to the types of deep network structure, deep features, feature enhancement methods, and network fine-tuning strategies. Our survey considers a wide variety of recent methods, aiming to promote a global view of the field of category-based CBIR.

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.

北京阿比特科技有限公司