亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Hospitalisations from COVID-19 with Omicron sub-lineages have put a sustained pressure on the English healthcare system. Understanding the expected healthcare demand enables more effective and timely planning from public health. We collect syndromic surveillance sources, which include online search data, NHS 111 telephonic and online triages. Incorporating this data we explore generalised additive models, generalised linear mixed-models, penalised generalised linear models and model ensemble methods to forecast over a two-week forecast horizon at an NHS Trust level. Furthermore, we showcase how model combinations improve forecast scoring through a mean ensemble, weighted ensemble, and ensemble by regression. Validated over multiple Omicron waves, at different spatial scales, we show that leading indicators can improve performance of forecasting models, particularly at epidemic changepoints. Using a variety of scoring rules, we show that ensemble approaches outperformed all individual models, providing higher performance at a 21-day window than the corresponding individual models at 14-days. We introduce a modelling structure used by public health officials in England in 2022 to inform NHS healthcare strategy and policy decision making. This paper explores the significance of ensemble methods to improve forecasting performance and how novel syndromic surveillance can be practically applied in epidemic forecasting.

相關內容

Multiscale Finite Element Methods (MsFEMs) are now well-established finite element type approaches dedicated to multiscale problems. They first compute local, oscillatory, problem-dependent basis functions that generate a suitable discretization space, and next perform a Galerkin approximation of the problem on that space. We investigate here how these approaches can be implemented in a non-intrusive way, in order to facilitate their dissemination within industrial codes or non-academic environments. We develop an abstract framework that covers a wide variety of MsFEMs for linear second-order partial differential equations. Non-intrusive MsFEM approaches are developed within the full generality of this framework, which may moreover be beneficial to steering software development and improving the theoretical understanding and analysis of MsFEMs.

Convolutional neural network (CNN) is an important deep learning method. The convolution operation takes a large proportion of the total execution time for CNN. Feature maps for convolution operation are usually sparse. Multiplications and additions for zero values in the feature map are useless for convolution results. In addition, the convolution layer and pooling layer are computed separately in traditional methods, which leads to frequent data transfer between CPU and GPU. Based on these observations, we propose two new methods to accelerate CNN on GPUs. The first method focuses on accelerating convolution operation and reducing the calculation of zero values. The second method combines the operations of one convolution layer with the following pooling layer to effectively reduce traffic between CPU and GPU. For the first method, we extract some convolution layers from LeNet, AlexNet, and GoogLeNet, and can achieve up to 3.6X speedup over cuDNN for the single-layer convolution on GPU. Experiment on VGG-19 achieves 3.5X speedup over cuDNN for convolution operation on average. For the second method, the experiment on VGG-19 achieves 4.3X speedup over cuDNN on average.

Adversarial attacks have been proven to be potential threats to Deep Neural Networks (DNNs), and many methods are proposed to defend against adversarial attacks. However, while enhancing the robustness, the clean accuracy will decline to a certain extent, implying a trade-off existed between the accuracy and robustness. In this paper, we firstly empirically find an obvious distinction between standard and robust models in the filters' weight distribution of the same architecture, and then theoretically explain this phenomenon in terms of the gradient regularization, which shows this difference is an intrinsic property for DNNs, and thus a static network architecture is difficult to improve the accuracy and robustness at the same time. Secondly, based on this observation, we propose a sample-wise dynamic network architecture named Adversarial Weight-Varied Network (AW-Net), which focuses on dealing with clean and adversarial examples with a ``divide and rule" weight strategy. The AW-Net dynamically adjusts network's weights based on regulation signals generated by an adversarial detector, which is directly influenced by the input sample. Benefiting from the dynamic network architecture, clean and adversarial examples can be processed with different network weights, which provides the potentiality to enhance the accuracy and robustness simultaneously. A series of experiments demonstrate that our AW-Net is architecture-friendly to handle both clean and adversarial examples and can achieve better trade-off performance than state-of-the-art robust models.

The pre-training and fine-tuning paradigm has contributed to a number of breakthroughs in Natural Language Processing (NLP). Instead of directly training on a downstream task, language models are first pre-trained on large datasets with cross-domain knowledge (e.g., Pile, MassiveText, etc.) and then fine-tuned on task-specific data (e.g., natural language generation, text summarization, etc.). Scaling the model and dataset size has helped improve the performance of LLMs, but unfortunately, this also lead to highly prohibitive computational costs. Pre-training LLMs often require orders of magnitude more FLOPs than fine-tuning and the model capacity often remains the same between the two phases. To achieve training efficiency w.r.t training FLOPs, we propose to decouple the model capacity between the two phases and introduce Sparse Pre-training and Dense Fine-tuning (SPDF). In this work, we show the benefits of using unstructured weight sparsity to train only a subset of weights during pre-training (Sparse Pre-training) and then recover the representational capacity by allowing the zeroed weights to learn (Dense Fine-tuning). We demonstrate that we can induce up to 75% sparsity into a 1.3B parameter GPT-3 XL model resulting in a 2.5x reduction in pre-training FLOPs, without a significant loss in accuracy on the downstream tasks relative to the dense baseline. By rigorously evaluating multiple downstream tasks, we also establish a relationship between sparsity, task complexity and dataset size. Our work presents a promising direction to train large GPT models at a fraction of the training FLOPs using weight sparsity, while retaining the benefits of pre-trained textual representations for downstream tasks.

Migration to OCaml 5 requires updating a lot of C bindings due to the removal of naked pointer support. Writing OCaml user-defined primitives in C is a necessity, but is unsafe and error-prone. It does not benefit from either OCaml's or C's type checking, and existing C static analysers are not aware of the OCaml GC safety rules, and cannot infer them from existing macros alone.The alternative is automatically generating C stubs, which requires correctly managing value lifetimes. Having a static analyser for OCaml to C interfaces is useful outside the OCaml 5 porting effort too. After some motivating examples of real bugs in C bindings a static analyser is presented that finds these known classes of bugs. The tool works on the OCaml abstract parse and typed trees, and generates a header file and a caller model. Together with a simplified model of the OCaml runtime this is used as input to a static analysis framework, Goblint. An analysis is developed that tracks dereferences of OCaml values, and together with the existing framework reports incorrect dereferences. An example is shown how to extend the analysis to cover more safety properties. The tools and runtime models are generic and could be reused with other static analysis tools.

Workplace communications around the world were drastically altered by Covid-19, related work-from-home orders, and the rise of remote work. To understand these shifts, we analyzed aggregated, anonymized metadata from over 360 billion emails within 4,361 organizations worldwide. By comparing month-to-month and year-over-year metrics, we examined changes in network community structures over 24 months before and after Covid-19. We also examined shifts across multiple communication media (email, instant messages, video calls, and calendaring software) within a single global organization, and compared them to communications shifts that were driven by changes in formal organizational structure. We found that, in 2020, organizations around the world became more siloed than in 2019, evidenced by increased modularity. This shift was concurrent with decreased stability within silos. Collectively, our analyses indicate that following the onset of Covid-19, employees began to shift more dynamically between subcommunities (teams, workgroups or functional areas). At the same time, once in a subcommunity, they limited their communication to other members of that community. We term these network changes dynamic silos. We provide initial insights into the meaning and implications of dynamic silos for the future of work.

AI is getting more involved in tasks formerly exclusively assigned to humans. Most of research on perceptions and social acceptability of AI in these areas is mainly restricted to the Western world. In this study, we compare trust, perceived responsibility, and reliance of AI and human experts across OECD and Indian sample. We find that OECD participants consider humans to be less capable but more morally trustworthy and more responsible than AI. In contrast, Indian participants trust humans more than AI but assign equal responsibility for both types of experts. We discuss implications of the observed differences for algorithmic ethics and human-computer interaction.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

Graph neural networks (GNNs) have been proven to be effective in various network-related tasks. Most existing GNNs usually exploit the low-frequency signals of node features, which gives rise to one fundamental question: is the low-frequency information all we need in the real world applications? In this paper, we first present an experimental investigation assessing the roles of low-frequency and high-frequency signals, where the results clearly show that exploring low-frequency signal only is distant from learning an effective node representation in different scenarios. How can we adaptively learn more information beyond low-frequency information in GNNs? A well-informed answer can help GNNs enhance the adaptability. We tackle this challenge and propose a novel Frequency Adaptation Graph Convolutional Networks (FAGCN) with a self-gating mechanism, which can adaptively integrate different signals in the process of message passing. For a deeper understanding, we theoretically analyze the roles of low-frequency signals and high-frequency signals on learning node representations, which further explains why FAGCN can perform well on different types of networks. Extensive experiments on six real-world networks validate that FAGCN not only alleviates the over-smoothing problem, but also has advantages over the state-of-the-arts.

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

北京阿比特科技有限公司