We study fair division of indivisible chores among $n$ agents with additive disutility functions. Two well-studied fairness notions for indivisible items are envy-freeness up to one/any item (EF1/EFX) and the standard notion of economic efficiency is Pareto optimality (PO). There is a noticeable gap between the results known for both EF1 and EFX in the goods and chores settings. The case of chores turns out to be much more challenging. We reduce this gap by providing slightly relaxed versions of the known results on goods for the chores setting. Interestingly, our algorithms run in polynomial time, unlike their analogous versions in the goods setting. We introduce the concept of $k$ surplus which means that up to $k$ more chores are allocated to the agents and each of them is a copy of an original chore. We present a polynomial-time algorithm which gives EF1 and PO allocations with $(n-1)$ surplus. We relax the notion of EFX slightly and define tEFX which requires that the envy from agent $i$ to agent $j$ is removed upon the transfer of any chore from the $i$'s bundle to $j$'s bundle. We give a polynomial-time algorithm that in the chores case for $3$ agents returns an allocation which is either proportional or tEFX. Note that proportionality is a very strong criterion in the case of indivisible items, and hence both notions we guarantee are desirable.
The analysis of conversations recorded in everyday life requires privacy protection. In this contribution, we explore a privacy-preserving feature extraction method based on input feature dimension reduction, spectral smoothing and the low-cost speaker anonymization technique based on McAdams coefficient. We assess the utility of the feature extraction methods with a voice activity detection and a speaker diarization system, while privacy protection is determined with a speech recognition and a speaker verification model. We show that the combination of McAdams coefficient and spectral smoothing maintains the utility while improving privacy.
Separating signals from an additive mixture may be an unnecessarily hard problem when one is only interested in specific properties of a given signal. In this work, we tackle simpler "statistical component separation" problems that focus on recovering a predefined set of statistical descriptors of a target signal from a noisy mixture. Assuming access to samples of the noise process, we investigate a method devised to match the statistics of the solution candidate corrupted by noise samples with those of the observed mixture. We first analyze the behavior of this method using simple examples with analytically tractable calculations. Then, we apply it in an image denoising context employing 1) wavelet-based descriptors, 2) ConvNet-based descriptors on astrophysics and ImageNet data. In the case of 1), we show that our method better recovers the descriptors of the target data than a standard denoising method in most situations. Additionally, despite not constructed for this purpose, it performs surprisingly well in terms of peak signal-to-noise ratio on full signal reconstruction. In comparison, representation 2) appears less suitable for image denoising. Finally, we extend this method by introducing a diffusive stepwise algorithm which gives a new perspective to the initial method and leads to promising results for image denoising under specific circumstances.
Social disruption occurs when a policy creates or destroys many network connections between agents. It is a costly side effect of many interventions and so a growing empirical literature recommends measuring and accounting for social disruption when evaluating the welfare impact of a policy. However, there is currently little work characterizing what can actually be learned about social disruption from data in practice. In this paper, we consider the problem of identifying social disruption in a research design that is popular in the literature. We provide two sets of identification results. First, we show that social disruption is not generally point identified, but informative bounds can be constructed using the eigenvalues of the network adjacency matrices observed by the researcher. Second, we show that point identification follows from a theoretically motivated monotonicity condition, and we derive a closed form representation. We apply our methods in two empirical illustrations and find large policy effects that otherwise might be missed by alternatives in the literature.
Discretization of the uniform norm of functions from a given finite dimensional subspace of continuous functions is studied. Previous known results show that for any $N$-dimensional subspace of the space of continuous functions it is sufficient to use $e^{CN}$ sample points for an accurate upper bound for the uniform norm by the discrete norm and that one cannot improve on the exponential growth of the number of sampling points for a good discretization theorem in the uniform norm. In this paper we focus on two types of results, which allow us to obtain good discretization of the uniform norm with polynomial in $N$ number of points. In the first way we weaken the discretization inequality by allowing a bound of the uniform norm by the discrete norm multiplied by an extra factor, which may depend on $N$. In the second way we impose restrictions on the finite dimensional subspace under consideration. In particular, we prove a general result, which connects the upper bound on the number of sampling points in the discretization theorem for the uniform norm with the best $m$-term bilinear approximation of the Dirichlet kernel associated with the given subspace.
We study a dynamic allocation problem in which $T$ sequentially arriving divisible resources are to be allocated to a number of agents with linear utilities. The marginal utilities of each resource to the agents are drawn stochastically from a known joint distribution, independently and identically across time, and the central planner makes immediate and irrevocable allocation decisions. Most works on dynamic resource allocation aim to maximize the utilitarian welfare, i.e., the efficiency of the allocation, which may result in unfair concentration of resources on certain high-utility agents while leaving others' demands under-fulfilled. In this paper, aiming at balancing efficiency and fairness, we instead consider a broad collection of welfare metrics, the H\"older means, which includes the Nash social welfare and the egalitarian welfare. To this end, we first study a fluid-based policy derived from a deterministic surrogate to the underlying problem and show that for all smooth H\"older mean welfare metrics it attains an $O(1)$ regret over the time horizon length $T$ against the hindsight optimum, i.e., the optimal welfare if all utilities were known in advance of deciding on allocations. However, when evaluated under the non-smooth egalitarian welfare, the fluid-based policy attains a regret of order $\Theta(\sqrt{T})$. We then propose a new policy built thereupon, called Backward Infrequent Re-solving with Thresholding ($\mathsf{BIRT}$), which consists of re-solving the deterministic surrogate problem at most $O(\log\log T)$ times. We prove the $\mathsf{BIRT}$ policy attains an $O(1)$ regret against the hindsight optimal egalitarian welfare, independently of the time horizon length $T$. We conclude by presenting numerical experiments to corroborate our theoretical claims and to illustrate the significant performance improvement against several benchmark policies.
Selective inference methods are developed for group lasso estimators for use with a wide class of distributions and loss functions. The method includes the use of exponential family distributions, as well as quasi-likelihood modeling for overdispersed count data, for example, and allows for categorical or grouped covariates as well as continuous covariates. A randomized group-regularized optimization problem is studied. The added randomization allows us to construct a post-selection likelihood which we show to be adequate for selective inference when conditioning on the event of the selection of the grouped covariates. This likelihood also provides a selective point estimator, accounting for the selection by the group lasso. Confidence regions for the regression parameters in the selected model take the form of Wald-type regions and are shown to have bounded volume. The selective inference method for grouped lasso is illustrated on data from the national health and nutrition examination survey while simulations showcase its behaviour and favorable comparison with other methods.
We consider the problem of online allocation subject to a long-term fairness penalty. Contrary to existing works, however, we do not assume that the decision-maker observes the protected attributes -- which is often unrealistic in practice. Instead they can purchase data that help estimate them from sources of different quality; and hence reduce the fairness penalty at some cost. We model this problem as a multi-armed bandit problem where each arm corresponds to the choice of a data source, coupled with the online allocation problem. We propose an algorithm that jointly solves both problems and show that it has a regret bounded by $\mathcal{O}(\sqrt{T})$. A key difficulty is that the rewards received by selecting a source are correlated by the fairness penalty, which leads to a need for randomization (despite a stochastic setting). Our algorithm takes into account contextual information available before the source selection, and can adapt to many different fairness notions. We also show that in some instances, the estimates used can be learned on the fly.
This paper investigates the best arm identification (BAI) problem in stochastic multi-armed bandits in the fixed confidence setting. The general class of the exponential family of bandits is considered. The existing algorithms for the exponential family of bandits face computational challenges. To mitigate these challenges, the BAI problem is viewed and analyzed as a sequential composite hypothesis testing task, and a framework is proposed that adopts the likelihood ratio-based tests known to be effective for sequential testing. Based on this test statistic, a BAI algorithm is designed that leverages the canonical sequential probability ratio tests for arm selection and is amenable to tractable analysis for the exponential family of bandits. This algorithm has two key features: (1) its sample complexity is asymptotically optimal, and (2) it is guaranteed to be $\delta-$PAC. Existing efficient approaches focus on the Gaussian setting and require Thompson sampling for the arm deemed the best and the challenger arm. Additionally, this paper analytically quantifies the computational expense of identifying the challenger in an existing approach. Finally, numerical experiments are provided to support the analysis.
The estimation of unknown parameters in simulations, also known as calibration, is crucial for practical management of epidemics and prediction of pandemic risk. A simple yet widely used approach is to estimate the parameters by minimizing the sum of the squared distances between actual observations and simulation outputs. It is shown in this paper that this method is inefficient, particularly when the epidemic models are developed based on certain simplifications of reality, also known as imperfect models which are commonly used in practice. To address this issue, a new estimator is introduced that is asymptotically consistent, has a smaller estimation variance than the least squares estimator, and achieves the semiparametric efficiency. Numerical studies are performed to examine the finite sample performance. The proposed method is applied to the analysis of the COVID-19 pandemic for 20 countries based on the SEIR (Susceptible-Exposed-Infectious-Recovered) model with both deterministic and stochastic simulations. The estimation of the parameters, including the basic reproduction number and the average incubation period, reveal the risk of disease outbreaks in each country and provide insights to the design of public health interventions.
Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.