亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we study an intelligent reflecting surface (IRS) assisted communication system with single-antenna transmitter and receiver, under imperfect channel state information (CSI). More specifically, we deal with the robust selection of binary (on/off) states of the IRS elements in order to maximize the worst-case energy efficiency (EE), given a bounded CSI uncertainty, while satisfying a minimum signal-to-noise ratio (SNR). The IRS phase shifts are adjusted so as to maximize the ideal SNR (i.e., without CSI error), based only on the estimated channels. First, we derive a closed-form expression of the worst-case SNR, and then formulate the robust (discrete) optimization problem. Moreover, we design and analyze a dynamic programming (DP) algorithm that is theoretically guaranteed to achieve the global maximum with polynomial complexity $O(L \log L)$, where $L$ is the number of IRS elements. Finally, numerical simulations confirm the theoretical results. In particular, the proposed algorithm shows identical performance with the exhaustive search, and significantly outperforms a baseline scheme, namely, the activation of all IRS elements.

相關內容

We introduce and study the online pause and resume problem. In this problem, a player attempts to find the $k$ lowest (alternatively, highest) prices in a sequence of fixed length $T$, which is revealed sequentially. At each time step, the player is presented with a price and decides whether to accept or reject it. The player incurs a switching cost whenever their decision changes in consecutive time steps, i.e., whenever they pause or resume purchasing. This online problem is motivated by the goal of carbon-aware load shifting, where a workload may be paused during periods of high carbon intensity and resumed during periods of low carbon intensity and incurs a cost when saving or restoring its state. It has strong connections to existing problems studied in the literature on online optimization, though it introduces unique technical challenges that prevent the direct application of existing algorithms. Extending prior work on threshold-based algorithms, we introduce double-threshold algorithms for both the minimization and maximization variants of this problem. We further show that the competitive ratios achieved by these algorithms are the best achievable by any deterministic online algorithm. Finally, we empirically validate our proposed algorithm through case studies on the application of carbon-aware load shifting using real carbon trace data and existing baseline algorithms.

This paper investigates the usage of hybrid automatic repeat request (HARQ) protocols for power-efficient and reliable communications over free space optical (FSO) links. By exploiting the large coherence time of the FSO channel, the proposed transmission schemes combat turbulence-induced fading by retransmitting the failed packets in the same coherence interval. To assess the performance of the presented HARQ technique, we extract a theoretical framework for the outage performance. In more detail, a closed-form expression for the outage probability (OP) is reported and an approximation for the high signal-to-noise ratio (SNR) region is extracted. Building upon the theoretical framework, we formulate a transmission power allocation problem throughout the retransmission rounds. This optimization problem is solved numerically through the use of an iterative algorithm. In addition, the average throughput of the HARQ schemes under consideration is examined. Simulation results validate the theoretical analysis under different turbulence conditions and demonstrate the performance improvement, in terms of both OP and throughput, of the proposed HARQ schemes compared to fixed transmit power HARQ benchmarks.

We consider a rate-splitting multiple access (RSMA)-based communication and radar coexistence (CRC) system. The proposed system allows an RSMA-based communication system to share spectrum with multiple radars. Furthermore, RSMA enables flexible and powerful interference management by splitting messages into common parts and private parts to partially decode interference and partially treat interference as noise. The RSMA-based CRC system thus significantly improves spectral efficiency, energy efficiency and quality of service (QoS) of communication users (CUs). However, the RSMA-based CRC system raises new challenges. Due to the spectrum sharing, the communication network and the radars cause interference to each other, which reduces the signal-to-interference-plus-noise ratio (SINR) of the radars as well as the data rate of the CUs in the communication network. Therefore, a major problem is to maximize the sum rate of the CUs while guaranteeing their QoS requirements of data transmissions and the SINR requirements of multiple radars. To achieve these objectives, we formulate a problem that optimizes i) the common rate allocation to the CUs, transmit power of common messages and transmit power of private messages of the CUs, and ii) transmit power of the radars. The problem is non-convex with multiple decision parameters, which is challenging to be solved. We propose two algorithms. The first sequential quadratic programming (SQP) can quickly return a local optimal solution, and has been known to be the state-of-the-art in nonlinear programming methods. The second is an additive approximation scheme (AAS) which solves the problem globally in a reasonable amount of time, based on the technique of applying exhaustive enumeration to a modified instance. The simulation results show the improvement of the AAS compared with the SQP in terms of sum rate.

Multi-view clustering (MvC) aims at exploring the category structure among multi-view data without label supervision. Multiple views provide more information than single views and thus existing MvC methods can achieve satisfactory performance. However, their performance might seriously degenerate when the views are noisy in practical scenarios. In this paper, we first formally investigate the drawback of noisy views and then propose a theoretically grounded deep MvC method (namely MvCAN) to address this issue. Specifically, we propose a novel MvC objective that enables un-shared parameters and inconsistent clustering predictions across multiple views to reduce the side effects of noisy views. Furthermore, a non-parametric iterative process is designed to generate a robust learning target for mining multiple views' useful information. Theoretical analysis reveals that MvCAN works by achieving the multi-view consistency, complementarity, and noise robustness. Finally, experiments on public datasets demonstrate that MvCAN outperforms state-of-the-art methods and is robust against the existence of noisy views.

We study the problem of federated stochastic multi-arm contextual bandits with unknown contexts, in which M agents are faced with different bandits and collaborate to learn. The communication model consists of a central server and the agents share their estimates with the central server periodically to learn to choose optimal actions in order to minimize the total regret. We assume that the exact contexts are not observable and the agents observe only a distribution of the contexts. Such a situation arises, for instance, when the context itself is a noisy measurement or based on a prediction mechanism. Our goal is to develop a distributed and federated algorithm that facilitates collaborative learning among the agents to select a sequence of optimal actions so as to maximize the cumulative reward. By performing a feature vector transformation, we propose an elimination-based algorithm and prove the regret bound for linearly parametrized reward functions. Finally, we validated the performance of our algorithm and compared it with another baseline approach using numerical simulations on synthetic data and on the real-world movielens dataset.

Data centers are critical to the commercial and social activities of modern society but are also major electricity consumers. To minimize their environmental impact, it is imperative to make data centers more energy efficient while maintaining a high quality of service (QoS). Bearing this consideration in mind, we develop an analytical model using queueing theory for evaluating the QoS of a data center. Furthermore, based on this model, we develop a domain-specific evolutionary optimization framework featuring a tailored solution representation and a constraint-aware initialization operator for finding the optimal placement of virtual network functions in a data center that optimizes multiple conflicting objectives with regard to energy consumption and QoS. In particular, our framework is applicable to any existing evolutionary multi-objective optimization algorithm in a plug-in manner. Extensive experiments validate the efficiency and accuracy of our QoS model as well as the effectiveness of our tailored algorithms for virtual network function placement problems at various scales.

We consider the problem of fairly allocating a set of indivisible goods among $n$ agents with additive valuations, using the popular fairness notion of maximin share (MMS). Since MMS allocations do not always exist, a series of works provided existence and algorithms for approximate MMS allocations. The current best approximation factor, for which the existence is known, is $(\frac{3}{4} + \frac{1}{12n})$ [Garg and Taki, 2021]. Most of these results are based on complicated analyses, especially those providing better than $2/3$ factor. Moreover, since no tight example is known of the Garg-Taki algorithm, it is unclear if this is the best factor of this approach. In this paper, we significantly simplify the analysis of this algorithm and also improve the existence guarantee to a factor of $(\frac{3}{4} + \min(\frac{1}{36}, \frac{3}{16n-4}))$. For small $n$, this provides a noticeable improvement. Furthermore, we present a tight example of this algorithm, showing that this may be the best factor one can hope for with the current techniques.

We consider the problem of minimizing a differentiable function with locally Lipschitz continuous gradient on a stratified set and present a first-order algorithm designed to find a stationary point of that problem. Our assumptions on the stratified set are satisfied notably by the determinantal variety (i.e., matrices of bounded rank), its intersection with the cone of positive-semidefinite matrices, and the set of nonnegative sparse vectors. The iteration map of the proposed algorithm applies a step of projected-projected gradient descent with backtracking line search, as proposed by Schneider and Uschmajew (2015), to its input but also to a projection of the input onto each of the lower strata to which it is considered close, and outputs a point among those thereby produced that maximally reduces the cost function. Under our assumptions on the stratified set, we prove that this algorithm produces a sequence whose accumulation points are stationary, and therefore does not follow the so-called apocalypses described by Levin, Kileel, and Boumal (2022). We illustrate the apocalypse-free property of our method through a numerical experiment on the determinantal variety.

In the era of the Internet of Things (IoT), blockchain is a promising technology for improving the efficiency of healthcare systems, as it enables secure storage, management, and sharing of real-time health data collected by the IoT devices. As the implementations of blockchain-based healthcare systems usually involve multiple conflicting metrics, it is essential to balance them according to the requirements of specific scenarios. In this paper, we formulate a joint optimization model with three metrics, namely latency, security, and computational cost, that are particularly important for IoT-enabled healthcare. However, it is computationally intractable to identify the exact optimal solution of this problem for practical sized systems. Thus, we propose an algorithm called the Adaptive Discrete Particle Swarm Algorithm (ADPSA) to obtain near-optimal solutions in a low-complexity manner. With its roots in the classical Particle Swarm Optimization (PSO) algorithm, our proposed ADPSA can effectively manage the numerous binary and integer variables in the formulation. We demonstrate by extensive numerical experiments that the ADPSA consistently outperforms existing benchmark approaches, including the original PSO, exhaustive search and Simulated Annealing, in a wide range of scenarios.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司