This paper investigates the usage of hybrid automatic repeat request (HARQ) protocols for power-efficient and reliable communications over free space optical (FSO) links. By exploiting the large coherence time of the FSO channel, the proposed transmission schemes combat turbulence-induced fading by retransmitting the failed packets in the same coherence interval. To assess the performance of the presented HARQ technique, we extract a theoretical framework for the outage performance. In more detail, a closed-form expression for the outage probability (OP) is reported and an approximation for the high signal-to-noise ratio (SNR) region is extracted. Building upon the theoretical framework, we formulate a transmission power allocation problem throughout the retransmission rounds. This optimization problem is solved numerically through the use of an iterative algorithm. In addition, the average throughput of the HARQ schemes under consideration is examined. Simulation results validate the theoretical analysis under different turbulence conditions and demonstrate the performance improvement, in terms of both OP and throughput, of the proposed HARQ schemes compared to fixed transmit power HARQ benchmarks.
We study the dynamic fulfillment problem in e-commerce, in which incoming (multi-item) customer orders must be immediately dispatched to (a combination of) fulfillment centers that have the required inventory. A prevailing approach to this problem, pioneered by Jasin and Sinha (2015), is to write a ``deterministic'' linear program that dictates, for each item in an incoming multi-item order from a particular region, how frequently it should be dispatched to each fulfillment center (FC). However, dispatching items in a way that satisfies these frequency constraints, without splitting the order across too many FC's, is challenging. Jasin and Sinha identify this as a correlated rounding problem, and propose an intricate rounding scheme that they prove is suboptimal by a factor of at most $\approx q/4$ on a $q$-item order. This paper provides to our knowledge the first substantially improved scheme for this correlated rounding problem, which is suboptimal by a factor of at most $1+\ln(q)$. We provide another scheme for sparse networks, which is suboptimal by a factor of at most $d$ if each item is stored in at most $d$ FC's. We show both of these guarantees to be tight in terms of the dependence on $q$ or $d$. Our schemes are simple and fast, based on an intuitive idea -- items wait for FC's to ``open'' at random times, but observe them on ``dilated'' time scales. This also implies a new randomized rounding method for the classical Set Cover problem, which could be of general interest. We numerically test our new rounding schemes under the same realistic setups as Jasin and Sinha (2015) and find that they improve runtimes, shorten code, and robustly improve performance. Our code is made publicly available.
As an emerging type of Neural Networks (NNs), Transformers are used in many domains ranging from Natural Language Processing to Autonomous Driving. In this paper, we study the robustness problem of Transformers, a key characteristic as low robustness may cause safety concerns. Specifically, we focus on Sparsemax-based Transformers and reduce the finding of their maximum robustness to a Mixed Integer Quadratically Constrained Programming (MIQCP) problem. We also design two pre-processing heuristics that can be embedded in the MIQCP encoding and substantially accelerate its solving. We then conduct experiments using the application of Land Departure Warning to compare the robustness of Sparsemax-based Transformers against that of the more conventional Multi-Layer-Perceptron (MLP) NNs. To our surprise, Transformers are not necessarily more robust, leading to profound considerations in selecting appropriate NN architectures for safety-critical domain applications.
Secure multiparty computation (MPC) on incomplete communication networks has been studied within two primary models: (1) Where a partial network is fixed a priori, and thus corruptions can occur dependent on its structure, and (2) Where edges in the communication graph are determined dynamically as part of the protocol. Whereas a rich literature has succeeded in mapping out the feasibility and limitations of graph structures supporting secure computation in the fixed-graph model (including strong classical lower bounds), these bounds do not apply in the latter dynamic-graph setting, which has recently seen exciting new results, but remains relatively unexplored. In this work, we initiate a similar foundational study of MPC within the dynamic-graph model. As a first step, we investigate the property of graph expansion. All existing protocols (implicitly or explicitly) yield communication graphs which are expanders, but it is not clear whether this is inherent. Our results consist of two types (for constant fraction of corruptions): * Upper bounds: We demonstrate secure protocols whose induced communication graphs are not expander graphs, within a wide range of settings (computational, information theoretic, with low locality, even with low locality and adaptive security), each assuming some form of input-independent setup. * Lower bounds: In the plain model (no setup) with adaptive corruptions, we demonstrate that for certain functionalities, no protocol can maintain a non-expanding communication graph against all adversarial strategies. Our lower bound relies only on protocol correctness (not privacy), and requires a surprisingly delicate argument. More generally, we provide a formal framework for analyzing the evolving communication graph of MPC protocols, giving a starting point for studying the relation between secure computation and further, more general graph properties.
The novel concept of near-field non-orthogonal multiple access (NF-NOMA) communications is proposed. The near-filed beamfocusing enables NOMA to be carried out in both angular and distance domains. Two novel frameworks are proposed, namely, single-location-beamfocusing NF-NOMA (SLB-NF-NOMA) and multiple-location-beamfocusing NF-NOMA (MLB-NF-NOMA). 1) For SLB-NF-NOMA, two NOMA users in the same angular direction with distinct quality of service (QoS) requirements can be grouped into one cluster. The hybrid beamformer design and power allocation problem is formulated to maximize the sum rate of the users with higher QoS (H-QoS) requirements. To solve this problem, the analog beamformer is first designed to focus the energy on the H-QoS users and the zero-forcing (ZF) digital beamformer is employed. Then, the optimal power allocation is obtained. 2) For MLB-NF-NOMA, the two NOMA users in the same cluster can have different angular directions. The analog beamformer is first designed to focus the energy on both two NOMA users. Then, a singular value decomposition (SVD) based ZF (SVD-ZF) digital beamformer is designed. Furthermore, a novel antenna allocation algorithm is proposed. Finally, a suboptimal power allocation algorithm is proposed. Numerical results demonstrate that the NF-NOMA can achieve a higher spectral efficiency and provide a higher flexibility than conventional far-field NOMA.
One of the key challenges towards the deployment of over-the-air federated learning (AirFL) is the design of mechanisms that can comply with the power and bandwidth constraints of the shared channel, while causing minimum deterioration to the learning performance as compared to baseline noiseless implementations. For additive white Gaussian noise (AWGN) channels with instantaneous per-device power constraints, prior work has demonstrated the optimality of a power control mechanism based on norm clipping. This was done through the minimization of an upper bound on the optimality gap for smooth learning objectives satisfying the Polyak-{\L}ojasiewicz (PL) condition. In this paper, we make two contributions to the development of AirFL based on norm clipping, which we refer to as AirFL-Clip. First, we provide a convergence bound for AirFLClip that applies to general smooth and non-convex learning objectives. Unlike existing results, the derived bound is free from run-specific parameters, thus supporting an offline evaluation. Second, we extend AirFL-Clip to include Top-k sparsification and linear compression. For this generalized protocol, referred to as AirFL-Clip-Comp, we derive a convergence bound for general smooth and non-convex learning objectives. We argue, and demonstrate via experiments, that the only time-varying quantities present in the bound can be efficiently estimated offline by leveraging the well-studied properties of sparse recovery algorithms.
We investigate trade-offs in static and dynamic evaluation of hierarchical queries with arbitrary free variables. In the static setting, the trade-off is between the time to partially compute the query result and the delay needed to enumerate its tuples. In the dynamic setting, we additionally consider the time needed to update the query result under single-tuple inserts or deletes to the database. Our approach observes the degree of values in the database and uses different computation and maintenance strategies for high-degree (heavy) and low-degree (light) values. For the latter it partially computes the result, while for the former it computes enough information to allow for on-the-fly enumeration. We define the preprocessing time, the update time, and the enumeration delay as functions of the light/heavy threshold. By appropriately choosing this threshold, our approach recovers a number of prior results when restricted to hierarchical queries. We show that for a restricted class of hierarchical queries, our approach achieves worst-case optimal update time and enumeration delay conditioned on the Online Matrix-Vector Multiplication Conjecture.
Owing to the promising ability of saving hardware cost and spectrum resources, integrated sensing and communication (ISAC) is regarded as a revolutionary technology for future sixth-generation (6G) networks. The mono-static ISAC systems considered in most of existing works can only obtain limited sensing performance due to the single observation angle and easily blocked transmission links, which motivates researchers to investigate cooperative ISAC networks. In order to further improve the degrees of freedom (DoFs) of cooperative ISAC networks, the transmitter-receiver selection, i.e., BS mode selection problem, is meaningful to be studied. However, to our best knowledge, this crucial problem has not been extensively studied in existing works. In this paper, we consider the joint BS mode selection, transmit beamforming, and receive filter design for cooperative cell-free ISAC networks, where multi-base stations (BSs) cooperatively serve communication users and detect targets. We aim to maximize the sum of sensing signal-to-interference-plus-noise ratio (SINR) under the communication SINR requirements, total power budget, and constraints on the numbers of transmitters and receivers. An efficient joint beamforming design algorithm and three different heuristic BS mode selection methods are proposed to solve this non-convex NP-hard problem. Simulation results demonstrates the advantages of cooperative ISAC networks, the importance of BS mode selection, and the effectiveness of our proposed joint design algorithms.
Let $T$ be a matrix whose entries are linear forms over the noncommutative variables $x_1, x_2, \ldots, x_n$. The noncommutative Edmonds' problem (NSINGULAR) aims to determine whether $T$ is invertible in the free skew field generated by $x_1,x_2,\ldots,x_n$. Currently, there are three different deterministic polynomial-time algorithms to solve this problem: using operator scaling [Garg, Gurvits, Oliveira, and Wigserdon (2016)], algebraic methods [Ivanyos, Qiao, and Subrahmanyam (2018)], and convex optimization [Hamada and Hirai (2021)]. In this paper, we present a simpler algorithm for the NSINGULAR problem. While our algorithmic template is similar to the one in Ivanyos et. al.(2018), it significantly differs in its implementation of the rank increment step. Instead of computing the limit of a second Wong sequence, we reduce the problem to the polynomial identity testing (PIT) of noncommutative algebraic branching programs (ABPs). This enables us to bound the bit-complexity of the algorithm over $\mathbb{Q}$ without requiring special care. Moreover, the rank increment step can be implemented in quasipolynomial-time even without an explicit description of the coefficient matrices in $T$. This is possible by exploiting the connection with the black-box PIT of noncommutative ABPs [Forbes and Shpilka (2013)].
Integrated visible light positioning and communication (VLPC), capable of combining advantages of visible light communications (VLC) and visible light positioning (VLP), is a promising key technology for the future Internet of Things. In VLPC networks, positioning and communications are inherently coupled, which has not been sufficiently explored in the literature. We propose a robust power allocation scheme for integrated VLPC Networks by exploiting the intrinsic relationship between positioning and communications. Specifically, we derive explicit relationships between random positioning errors, following both a Gaussian distribution and an arbitrary distribution, and channel state information errors. Then, we minimize the Cramer-Rao lower bound (CRLB) of positioning errors, subject to the rate outage constraint and the power constraints, which is a chance-constrained optimization problem and generally computationally intractable. To circumvent the nonconvex challenge, we conservatively transform the chance constraints to deterministic forms by using the Bernstein-type inequality and the conditional value-at-risk for the Gaussian and arbitrary distributed positioning errors, respectively, and then approximate them as convex semidefinite programs. Finally, simulation results verify the robustness and effectiveness of our proposed integrated VLPC design schemes.
Multi-label text classification refers to the problem of assigning each given document its most relevant labels from the label set. Commonly, the metadata of the given documents and the hierarchy of the labels are available in real-world applications. However, most existing studies focus on only modeling the text information, with a few attempts to utilize either metadata or hierarchy signals, but not both of them. In this paper, we bridge the gap by formalizing the problem of metadata-aware text classification in a large label hierarchy (e.g., with tens of thousands of labels). To address this problem, we present the MATCH solution -- an end-to-end framework that leverages both metadata and hierarchy information. To incorporate metadata, we pre-train the embeddings of text and metadata in the same space and also leverage the fully-connected attentions to capture the interrelations between them. To leverage the label hierarchy, we propose different ways to regularize the parameters and output probability of each child label by its parents. Extensive experiments on two massive text datasets with large-scale label hierarchies demonstrate the effectiveness of MATCH over state-of-the-art deep learning baselines.