亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Airborne diseases, including COVID-19, raise the question of transmission risk in public transportation systems. However, quantitative analysis of the effectiveness of transmission risk mitigation methods in public transportation is lacking. The paper develops a transmission risk modeling framework based on the Wells-Riley model using as inputs transit operating characteristics, schedule, Origin-Destination (OD) demand, and virus characteristics. The model is sensitive to various factors that operators can control, as well as external factors that may be subject of broader policy decisions (e.g. mask wearing). The model is utilized to assess transmission risk as a function of OD flows, planned operations, and factors such as mask-wearing, ventilation, and infection rates. Using actual data from the Massachusetts Bay Transportation Authority (MBTA) Red Line, the paper explores the transmission risk under different infection rate scenarios, both in magnitude and spatial characteristics. The paper assesses the combined impact from viral load related factors and passenger load factors. Increasing frequency can mitigate transmission risk, but cannot fully compensate for increases in infection rates. Imbalanced passenger distribution on different cars of a train is shown to increase the overall system-wide infection probability. Spatial infection rate patterns should also be taken into account during policymaking as it is shown to impact transmission risk. For lines with branches, demand distribution among the branches is important and headway allocation adjustment among branches to balance the load on trains to different branches can help reduce risk.

相關內容

Human action recognition and analysis have great demand and important application significance in video surveillance, video retrieval, and human-computer interaction. The task of human action quality evaluation requires the intelligent system to automatically and objectively evaluate the action completed by the human. The action quality assessment model can reduce the human and material resources spent in action evaluation and reduce subjectivity. In this paper, we provide a comprehensive survey of existing papers on video-based action quality assessment. Different from human action recognition, the application scenario of action quality assessment is relatively narrow. Most of the existing work focuses on sports and medical care. We first introduce the definition and challenges of human action quality assessment. Then we present the existing datasets and evaluation metrics. In addition, we summarized the methods of sports and medical care according to the model categories and publishing institutions according to the characteristics of the two fields. At the end, combined with recent work, the promising development direction in action quality assessment is discussed.

The Internet of Things (IoT) is one of the emerging technologies that has grabbed the attention of researchers from academia and industry. The idea behind Internet of things is the interconnection of internet enabled things or devices to each other and to humans, to achieve some common goals. In near future IoT is expected to be seamlessly integrated into our environment and human will be wholly solely dependent on this technology for comfort and easy life style. Any security compromise of the system will directly affect human life. Therefore security and privacy of this technology is foremost important issue to resolve. In this paper we present a thorough study of security problems in IoT and classify possible cyberattacks on each layer of IoT architecture. We also discuss challenges to traditional security solutions such as cryptographic solutions, authentication mechanisms and key management in IoT. Device authentication and access controls is an essential area of IoT security, which is not surveyed so far. We spent our efforts to bring the state of the art device authentication and access control techniques on a single paper.

When IP-packet processing is unconditionally carried out on behalf of an operating system kernel thread, processing systems can experience overload in high incoming traffic scenarios. This is especially worrying for embedded real-time devices controlling their physical environment in industrial IoT scenarios and automotive systems. We propose an embedded real-time aware IP stack adaption with an early demultiplexing scheme for incoming packets and subsequent per-flow aperiodic scheduling. By instrumenting existing embedded IP stacks, rigid prioritization with minimal latency is deployed without the need of further task resources. Simple mitigation techniques can be applied to individual flows, causing hardly measurable overhead while at the same time protecting the system from overload conditions. Our IP stack adaption is able to reduce the low-priority packet processing time by over 86% compared to an unmodified stack. The network subsystem can thereby remain active at a 7x higher general traffic load before disabling the receive IRQ as a last resort to assure deadlines.

The irresponsible use of ML algorithms in practical settings has received a lot of deserved attention in the recent years. We posit that the traditional system analysis perspective is needed when designing and implementing ML algorithms and systems. Such perspective can provide a formal way for evaluating and enabling responsible ML practices. In this paper, we review components of the System Analysis methodology and highlight how they connect and enable responsible practices of ML design.

Gaussian Process (GP) emulators are widely used to approximate complex computer model behaviour across the input space. Motivated by the problem of coupling computer models, recently progress has been made in the theory of the analysis of networks of connected GP emulators. In this paper, we combine these recent methodological advances with classical state-space models to construct a Bayesian decision support system. This approach gives a coherent probability model that produces predictions with the measure of uncertainty in terms of two first moments and enables the propagation of uncertainty from individual decision components. This methodology is used to produce a decision support tool for a UK county council considering low carbon technologies to transform its infrastructure to reach a net-zero carbon target. In particular, we demonstrate how to couple information from an energy model, a heating demand model, and gas and electricity price time-series to quantitatively assess the impact on operational costs of various policy choices and changes in the energy market.

Recruitment in large organisations often involves interviewing a large number of candidates. The process is resource intensive and complex. Therefore, it is important to carry it out efficiently and effectively. Planning the selection process consists of several problems, each of which maps to one or the other well-known computing problem. Research that looks at each of these problems in isolation is rich and mature. However, research that takes an integrated view of the problem is not common. In this paper, we take two of the most important aspects of the application processing problem, namely review/interview panel creation and interview scheduling. We have implemented our approach as a prototype system and have used it to automatically plan the interview process of a real-life data set. Our system provides a distinctly better plan than the existing practice, which is predominantly manual. We have explored various algorithmic options and have customised them to solve these panel creation and interview scheduling problems. We have evaluated these design options experimentally on a real data set and have presented our observations. Our prototype and experimental process and results may be a very good starting point for a full-fledged development project for automating application processing process.

Recently, Graph Neural Networks (GNNs) have been applied for scheduling jobs over clusters, achieving better performance than hand-crafted heuristics. Despite their impressive performance, concerns remain over whether these GNN-based job schedulers meet users' expectations about other important properties, such as strategy-proofness, sharing incentive, and stability. In this work, we consider formal verification of GNN-based job schedulers. We address several domain-specific challenges such as networks that are deeper and specifications that are richer than those encountered when verifying image and NLP classifiers. We develop vegas, the first general framework for verifying both single-step and multi-step properties of these schedulers based on carefully designed algorithms that combine abstractions, refinements, solvers, and proof transfer. Our experimental results show that vegas achieves significant speed-up when verifying important properties of a state-of-the-art GNN-based scheduler compared to previous methods.

Spectral efficiency improvement is a key focus in most wireless communication systems and achieved by various means such as using large antenna arrays and/or advanced modulation schemes and signal formats. This work proposes to further improve spectral efficiency through combining non-orthogonal spectrally efficient frequency division multiplexing (SEFDM) systems with index modulation (IM), which can efficiently make use of the indices of activated subcarriers as communication information. Recent research has verified that IM may be used with SEFDM to alleviate inter-carrier interference (ICI) and improve error performance. This work proposes new SEFDM signal formats based on novel activation pattern designs, which limit the locations of activated subcarriers and enable a variable number of activated subcarriers in each SEFDM subblock. SEFDM-IM system designs are developed by jointly considering activation patterns, modulation schemes and signal waveform formats, with a set of solutions evaluated under different spectral efficiency scenarios. Detailed modelling of coded systems and simulation studies reveal that the proposed designs not only lead to better bit error rate (BER) but also lower peak-to-average power ratio (PAPR) and reduced computational complexity relative to other reported index-modulated systems.

Requirements engineering (RE) activities for Machine Learning (ML) are not well-established and researched in the literature. Many issues and challenges exist when specifying, designing, and developing ML-enabled systems. Adding more focus on RE for ML can help to develop more reliable ML-enabled systems. Based on insights collected from previous work and industrial experiences, we propose a catalogue of 45 concerns to be considered when specifying ML-enabled systems, covering five different perspectives we identified as relevant for such systems: objectives, user experience, infrastructure, model, and data. Examples of such concerns include the execution engine and telemetry for the infrastructure perspective, and explainability and reproducibility for the model perspective. We conducted a focus group session with eight software professionals with experience developing ML-enabled systems to validate the importance, quality and feasibility of using our catalogue. The feedback allowed us to improve the catalogue and confirmed its practical relevance. The main research contribution of this work consists in providing a validated set of concerns grouped into perspectives that can be used by requirements engineers to support the specification of ML-enabled systems.

Task graphs provide a simple way to describe scientific workflows (sets of tasks with dependencies) that can be executed on both HPC clusters and in the cloud. An important aspect of executing such graphs is the used scheduling algorithm. Many scheduling heuristics have been proposed in existing works; nevertheless, they are often tested in oversimplified environments. We provide an extensible simulation environment designed for prototyping and benchmarking task schedulers, which contains implementations of various scheduling algorithms and is open-sourced, in order to be fully reproducible. We use this environment to perform a comprehensive analysis of workflow scheduling algorithms with a focus on quantifying the effect of scheduling challenges that have so far been mostly neglected, such as delays between scheduler invocations or partially unknown task durations. Our results indicate that network models used by many previous works might produce results that are off by an order of magnitude in comparison to a more realistic model. Additionally, we show that certain implementation details of scheduling algorithms which are often neglected can have a large effect on the scheduler's performance, and they should thus be described in great detail to enable proper evaluation.

北京阿比特科技有限公司