In this paper, an important discovery has been found for nonconforming immersed finite element (IFE) methods using the integral values on edges as degrees of freedom for solving elliptic interface problems. We show that those IFE methods without penalties are not guaranteed to converge optimally if the tangential derivative of the exact solution and the jump of the coefficient are not zero on the interface. A nontrivial counter example is also provided to support our theoretical analysis. To recover the optimal convergence rates, we develop a new nonconforming IFE method with additional terms locally on interface edges. The new method is parameter-free which removes the limitation of the conventional partially penalized IFE method. We show the IFE basis functions are unisolvent on arbitrary triangles which is not considered in the literature. Furthermore, different from multipoint Taylor expansions, we derive the optimal approximation capabilities of both the Crouzeix-Raviart and the rotated-$Q_1$ IFE spaces via a unified approach which can handle the case of variable coefficients easily. Finally, optimal error estimates in both $H^1$- and $L^2$- norms are proved and confirmed with numerical experiments.
Conductivity reconstruction in an inverse eddy current problem is considered in the present paper. With the electric field measurement on part of domain boundary, we formulate the reconstruction problem to a constrained optimization problem with total variation regularization. Existence and stability are proved for the solution to the optimization problem. The finite element method is employed to discretize the optimization problem. The gradient Lipschitz properties of the objective functional are established for the the discrete optimization problems. We propose the alternating direction method of multipliers to solve the discrete problem. Based on the the gradient Lipschitz property, we prove the convergence by extending the admissible set to the whole finite element space. Finally, we show some numerical experiments to illustrate the efficiency of the proposed methods.
In health and social sciences, it is critically important to identify subgroups of the study population where there is notable heterogeneity of treatment effects (HTE) with respect to the population average. Decision trees have been proposed and commonly adopted for data-driven discovery of HTE due to their high level of interpretability. However, single-tree discovery of HTE can be unstable and oversimplified. This paper introduces Causal Rule Ensemble (CRE), a new method for HTE discovery and estimation through an ensemble-of-trees approach. CRE offers several key features, including 1) an interpretable representation of the HTE; 2) the ability to explore complex heterogeneity patterns; and 3) high stability in subgroups discovery. The discovered subgroups are defined in terms of interpretable decision rules. Estimation of subgroup-specific causal effects is performed via a two-stage approach for which we provide theoretical guarantees. Via simulations, we show that the CRE method is highly competitive when compared to state-of-the-art techniques. Finally, we apply CRE to discover the heterogeneous health effects of exposure to air pollution on mortality for 35.3 million Medicare beneficiaries across the contiguous U.S.
Linear wave equations sourced by a Dirac delta distribution $\delta(x)$ and its derivative(s) can serve as a model for many different phenomena. We describe a discontinuous Galerkin (DG) method to numerically solve such equations with source terms proportional to $\partial^n \delta /\partial x^n$. Despite the presence of singular source terms, which imply discontinuous or potentially singular solutions, our DG method achieves global spectral accuracy even at the source's location. Our DG method is developed for the wave equation written in fully first-order form. The first-order reduction is carried out using a distributional auxiliary variable that removes some of the source term's singular behavior. While this is helpful numerically, it gives rise to a distributional constraint. We show that a time-independent spurious solution can develop if the initial constraint violation is proportional to $\delta(x)$. Numerical experiments verify this behavior and our scheme's convergence properties by comparing against exact solutions.
Univariate and multivariate normal probability distributions are widely used when modeling decisions under uncertainty. Computing the performance of such models requires integrating these distributions over specific domains, which can vary widely across models. Besides some special cases, there exist no general analytical expressions, standard numerical methods or software for these integrals. Here we present mathematical results and open-source software that provide (i) the probability in any domain of a normal in any dimensions with any parameters, (ii) the probability density, cumulative distribution, and inverse cumulative distribution of any function of a normal vector, (iii) the classification errors among any number of normal distributions, the Bayes-optimal discriminability index and relation to the operating characteristic, (iv) dimension reduction and visualizations for such problems, and (v) tests for how reliably these methods may be used on given data. We demonstrate these tools with vision research applications of detecting occluding objects in natural scenes, and detecting camouflage.
Consider a mechanism that cannot observe how many players there are directly, but instead must rely on their self-reports to know how many are participating. Suppose the players can create new identities to report to the auctioneer at some cost $c$. The usual mechanism design paradigm is equivalent to implicitly assuming that $c$ is infinity for all players, while the usual Sybil attacks literature is that it is zero or finite for one player (the attacker) and infinity for everyone else (the 'honest' players). The false-name proof literature largely assumes the cost to be 0. We consider a model with variable costs that unifies these disparate streams. A paradigmatic normal form game can be extended into a Sybil game by having the action space by the product of the feasible set of identities to create action where each player chooses how many players to present as in the game and their actions in the original normal form game. A mechanism is (dominant) false-name proof if it is (dominant) incentive-compatible for all the players to self-report as at most one identity. We study mechanisms proposed in the literature motivated by settings where anonymity and self-identification are the norms, and show conditions under which they are not Sybil-proof. We characterize a class of dominant Sybil-proof mechanisms for reward sharing and show that they achieve the efficiency upper bound. We consider the extension when agents can credibly commit to the strategy of their sybils and show how this can break mechanisms that would otherwise be false-name proof.
We study cut finite element discretizations of a Darcy interface problem based on the mixed finite element pairs $\textbf{RT}_0\times Q_0$, $\textbf{BDM}_1\times Q_0$, and $\textbf{RT}_1\times Q_1$. Here $Q_k$ is the space of discontinuous polynomial functions of degree k, $\textbf{RT}_{k}$ is the Raviart-Thomas space, and $\textbf{BDM}_k$ is the Brezzi-Douglas-Marini space. We show that the standard ghost penalty stabilization, often added in the weak forms of cut finite element methods for stability and control of the condition number of the resulting linear system matrix, destroys the divergence-free property of the considered element pairs. Therefore, we propose two corrections to the standard stabilization strategy: using macro-elements and new stabilization terms for the pressure. By decomposing the computational mesh into macro-elements and applying ghost penalty terms only on interior edges of macro-elements, stabilization is active only where needed. By modifying the standard stabilization terms for the pressure we recover the optimal approximation of the divergence without losing control of the condition number of the linear system matrix. We derive a priori error estimates for the proposed unfitted finite element discretization based on $\textbf{RT}_k\times Q_k$, $k\geq 0$. Numerical experiments indicate that with the new method we have 1) optimal rates of convergence of the approximate velocity and pressure; 2) well-posed linear systems where the condition number of the system matrix scales as it does for fitted finite element discretizations; 3) optimal rates of convergence of the approximate divergence with pointwise divergence-free approximations of solenoidal velocity fields. All three properties hold independently of how the interface is positioned relative to the computational mesh.
In this paper, numerical methods based on Vieta-Lucas wavelets are proposed for solving a class of singular differential equations. The operational matrix of the derivative for Vieta-Lucas wavelets is derived. It is employed to reduce the differential equations into the system of algebraic equations by applying the ideas of the collocation scheme, Tau scheme, and Galerkin scheme respectively. Furthermore, the convergence analysis and error estimates for Vieta-Lucas wavelets are performed. In the numerical section, the comparative analysis is presented among the different versions of the proposed Vieta-Lucas wavelet methods, and the accuracy of the approaches is evaluated by computing the errors and comparing them to the existing findings.
The majority of machine learning methods can be regarded as the minimization of an unavailable risk function. To optimize the latter, given samples provided in a streaming fashion, we define a general stochastic Newton algorithm and its weighted average version. In several use cases, both implementations will be shown not to require the inversion of a Hessian estimate at each iteration, but a direct update of the estimate of the inverse Hessian instead will be favored. This generalizes a trick introduced in [2] for the specific case of logistic regression, by directly updating the estimate of the inverse Hessian. Under mild assumptions such as local strong convexity at the optimum, we establish almost sure convergences and rates of convergence of the algorithms, as well as central limit theorems for the constructed parameter estimates. The unified framework considered in this paper covers the case of linear, logistic or softmax regressions to name a few. Numerical experiments on simulated data give the empirical evidence of the pertinence of the proposed methods, which outperform popular competitors particularly in case of bad initializa-tions.
This PhD thesis contains several contributions to the field of statistical causal modeling. Statistical causal models are statistical models embedded with causal assumptions that allow for the inference and reasoning about the behavior of stochastic systems affected by external manipulation (interventions). This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust (out-of-distribution generalizing) prediction methods. We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization. Our proposed estimators show, in certain settings, mean squared error improvements compared to both canonical and state-of-the-art estimators. We show that recent research on distributionally robust prediction methods has connections to well-studied estimators from econometrics. This connection leads us to prove that general K-class estimators possess distributional robustness properties. We, furthermore, propose a general framework for distributional robustness with respect to intervention-induced distributions. In this framework, we derive sufficient conditions for the identifiability of distributionally robust prediction methods and present impossibility results that show the necessity of several of these conditions. We present a new structure learning method applicable in additive noise models with directed trees as causal graphs. We prove consistency in a vanishing identifiability setup and provide a method for testing substructure hypotheses with asymptotic family-wise error control that remains valid post-selection. Finally, we present heuristic ideas for learning summary graphs of nonlinear time-series models.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.