Recent years have witnessed great strides in self-supervised learning (SSL) on the speech processing. The SSL model is normally pre-trained on a great variety of unlabelled data and a large model size is preferred to increase the modeling capacity. However, this might limit its potential applications due to the expensive computation and memory costs introduced by the oversize model. Miniaturization for SSL models has become an important research direction of practical value. To this end, we explore the effective distillation of HuBERT-based SSL models for automatic speech recognition (ASR). First, in order to establish a strong baseline, a comprehensive study on different student model structures is conducted. On top of this, as a supplement to the regression loss widely adopted in previous works, a discriminative loss is introduced for HuBERT to enhance the distillation performance, especially in low-resource scenarios. In addition, we design a simple and effective algorithm to distill the front-end input from waveform to Fbank feature, resulting in 17% parameter reduction and doubling inference speed, at marginal performance degradation.
The technology of hyperspectral imaging (HSI) records the visual information upon long-range-distributed spectral wavelengths. A representative hyperspectral image acquisition procedure conducts a 3D-to-2D encoding by the coded aperture snapshot spectral imager (CASSI) and requires a software decoder for the 3D signal reconstruction. By observing this physical encoding procedure, two major challenges stand in the way of a high-fidelity reconstruction. (i) To obtain 2D measurements, CASSI dislocates multiple channels by disperser-titling and squeezes them onto the same spatial region, yielding an entangled data loss. (ii) The physical coded aperture leads to a masked data loss by selectively blocking the pixel-wise light exposure. To tackle these challenges, we propose a spatial-spectral (S^2-) Transformer network with a mask-aware learning strategy. First, we simultaneously leverage spatial and spectral attention modeling to disentangle the blended information in the 2D measurement along both two dimensions. A series of Transformer structures are systematically designed to fully investigate the spatial and spectral informative properties of the hyperspectral data. Second, the masked pixels will induce higher prediction difficulty and should be treated differently from unmasked ones. Thereby, we adaptively prioritize the loss penalty attributing to the mask structure by inferring the pixel-wise reconstruction difficulty upon the mask-encoded prediction. We theoretically discusses the distinct convergence tendencies between masked/unmasked regions of the proposed learning strategy. Extensive experiments demonstrates that the proposed method achieves superior reconstruction performance. Additionally, we empirically elaborate the behaviour of spatial and spectral attentions under the proposed architecture, and comprehensively examine the impact of the mask-aware learning.
Pretraining neural networks with massive unlabeled datasets has become popular as it equips the deep models with a better prior to solve downstream tasks. However, this approach generally assumes that for downstream tasks, we have access to annotated data of sufficient size. In this work, we propose ALOE, a novel system for improving the data- and label-efficiency of non-semantic speech tasks with active learning (AL). ALOE uses pre-trained models in conjunction with active learning to label data incrementally and learns classifiers for downstream tasks, thereby mitigating the need to acquire labeled data beforehand. We demonstrate the effectiveness of ALOE on a wide range of tasks, uncertainty-based acquisition functions, and model architectures. Training a linear classifier on top of a frozen encoder with ALOE is shown to achieve performance similar to several baselines that utilize the entire labeled data.
Automatic speech recognition research focuses on training and evaluating on static datasets. Yet, as speech models are increasingly deployed on personal devices, such models encounter user-specific distributional shifts. To simulate this real-world scenario, we introduce LibriContinual, a continual learning benchmark for speaker-specific domain adaptation derived from LibriVox audiobooks, with data corresponding to 118 individual speakers and 6 train splits per speaker of different sizes. Additionally, current speech recognition models and continual learning algorithms are not optimized to be compute-efficient. We adapt a general-purpose training algorithm NetAug for ASR and create a novel Conformer variant called the DisConformer (Disentangled Conformer). This algorithm produces ASR models consisting of a frozen 'core' network for general-purpose use and several tunable 'augment' networks for speaker-specific tuning. Using such models, we propose a novel compute-efficient continual learning algorithm called DisentangledCL. Our experiments show that the DisConformer models significantly outperform baselines on general ASR i.e. LibriSpeech (15.58% rel. WER on test-other). On speaker-specific LibriContinual they significantly outperform trainable-parameter-matched baselines (by 20.65% rel. WER on test) and even match fully finetuned baselines in some settings.
Few-Shot Learning (FSL) has attracted growing attention in computer vision due to its capability in model training without the need for excessive data. FSL is challenging because the training and testing categories (the base vs. novel sets) can be largely diversified. Conventional transfer-based solutions that aim to transfer knowledge learned from large labeled training sets to target testing sets are limited, as critical adverse impacts of the shift in task distribution are not adequately addressed. In this paper, we extend the solution of transfer-based methods by incorporating the concept of metric-learning and channel attention. To better exploit the feature representations extracted by the feature backbone, we propose Class-Specific Channel Attention (CSCA) module, which learns to highlight the discriminative channels in each class by assigning each class one CSCA weight vector. Unlike general attention modules designed to learn global-class features, the CSCA module aims to learn local and class-specific features with very effective computation. We evaluated the performance of the CSCA module on standard benchmarks including miniImagenet, Tiered-ImageNet, CIFAR-FS, and CUB-200-2011. Experiments are performed in inductive and in/cross-domain settings. We achieve new state-of-the-art results.
An important challenge in vision-based action recognition is the embedding of spatiotemporal features with two or more heterogeneous modalities into a single feature. In this study, we propose a new 3D deformable transformer for action recognition with adaptive spatiotemporal receptive fields and a cross-modal learning scheme. The 3D deformable transformer consists of three attention modules: 3D deformability, local joint stride, and temporal stride attention. The two cross-modal tokens are input into the 3D deformable attention module to create a cross-attention token with a reflected spatiotemporal correlation. Local joint stride attention is applied to spatially combine attention and pose tokens. Temporal stride attention temporally reduces the number of input tokens in the attention module and supports temporal expression learning without the simultaneous use of all tokens. The deformable transformer iterates L times and combines the last cross-modal token for classification. The proposed 3D deformable transformer was tested on the NTU60, NTU120, FineGYM, and Penn Action datasets, and showed results better than or similar to pre-trained state-of-the-art methods even without a pre-training process. In addition, by visualizing important joints and correlations during action recognition through spatial joint and temporal stride attention, the possibility of achieving an explainable potential for action recognition is presented.
Recent methods for neural surface representation and rendering, for example NeuS, have demonstrated remarkably high-quality reconstruction of static scenes. However, the training of NeuS takes an extremely long time (8 hours), which makes it almost impossible to apply them to dynamic scenes with thousands of frames. We propose a fast neural surface reconstruction approach, called NeuS2, which achieves two orders of magnitude improvement in terms of acceleration without compromising reconstruction quality. To accelerate the training process, we integrate multi-resolution hash encodings into a neural surface representation and implement our whole algorithm in CUDA. We also present a lightweight calculation of second-order derivatives tailored to our networks (i.e., ReLU-based MLPs), which achieves a factor two speed up. To further stabilize training, a progressive learning strategy is proposed to optimize multi-resolution hash encodings from coarse to fine. In addition, we extend our method for reconstructing dynamic scenes with an incremental training strategy. Our experiments on various datasets demonstrate that NeuS2 significantly outperforms the state-of-the-arts in both surface reconstruction accuracy and training speed. The video is available at //vcai.mpi-inf.mpg.de/projects/NeuS2/ .
We introduce submodel co-training, a regularization method related to co-training, self-distillation and stochastic depth. Given a neural network to be trained, for each sample we implicitly instantiate two altered networks, ``submodels'', with stochastic depth: we activate only a subset of the layers. Each network serves as a soft teacher to the other, by providing a loss that complements the regular loss provided by the one-hot label. Our approach, dubbed cosub, uses a single set of weights, and does not involve a pre-trained external model or temporal averaging. Experimentally, we show that submodel co-training is effective to train backbones for recognition tasks such as image classification and semantic segmentation. Our approach is compatible with multiple architectures, including RegNet, ViT, PiT, XCiT, Swin and ConvNext. Our training strategy improves their results in comparable settings. For instance, a ViT-B pretrained with cosub on ImageNet-21k obtains 87.4% top-1 acc. @448 on ImageNet-val.
The Q-learning algorithm is known to be affected by the maximization bias, i.e. the systematic overestimation of action values, an important issue that has recently received renewed attention. Double Q-learning has been proposed as an efficient algorithm to mitigate this bias. However, this comes at the price of an underestimation of action values, in addition to increased memory requirements and a slower convergence. In this paper, we introduce a new way to address the maximization bias in the form of a "self-correcting algorithm" for approximating the maximum of an expected value. Our method balances the overestimation of the single estimator used in conventional Q-learning and the underestimation of the double estimator used in Double Q-learning. Applying this strategy to Q-learning results in Self-correcting Q-learning. We show theoretically that this new algorithm enjoys the same convergence guarantees as Q-learning while being more accurate. Empirically, it performs better than Double Q-learning in domains with rewards of high variance, and it even attains faster convergence than Q-learning in domains with rewards of zero or low variance. These advantages transfer to a Deep Q Network implementation that we call Self-correcting DQN and which outperforms regular DQN and Double DQN on several tasks in the Atari 2600 domain.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.
Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.