亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work presents a new algorithm to compute the matrix exponential within a given tolerance. Combined with the scaling and squaring procedure, the algorithm incorporates Taylor, partitioned and classical Pad\'e methods shown to be superior in performance to the approximants used in state-of-the-art software. The algorithm computes matrix--matrix products and also matrix inverses, but it can be implemented to avoid the computation of inverses, making it convenient for some problems. If the matrix A belongs to a Lie algebra, then exp(A) belongs to its associated Lie group, being a property which is preserved by diagonal Pad\'e approximants, and the algorithm has another option to use only these. Numerical experiments show the superior performance with respect to state-of-the-art implementations.

相關內容

We propose a new simple and explicit numerical scheme for time-homogeneous stochastic differential equations. The scheme is based on sampling increments at each time step from a skew-symmetric probability distribution, with the level of skewness determined by the drift and volatility of the underlying process. We show that as the step-size decreases the scheme converges weakly to the diffusion of interest. We then consider the problem of simulating from the limiting distribution of an ergodic diffusion process using the numerical scheme with a fixed step-size. We establish conditions under which the numerical scheme converges to equilibrium at a geometric rate, and quantify the bias between the equilibrium distributions of the scheme and of the true diffusion process. Notably, our results do not require a global Lipschitz assumption on the drift, in contrast to those required for the Euler--Maruyama scheme for long-time simulation at fixed step-sizes. Our weak convergence result relies on an extension of the theory of Milstein \& Tretyakov to stochastic differential equations with non-Lipschitz drift, which could also be of independent interest. We support our theoretical results with numerical simulations.

A swarm intelligence-based optimization algorithm, named Duck Swarm Algorithm (DSA), is proposed in this study, which is inspired by the searching for food sources and foraging behaviors of the duck swarm. Two rules are modeled from the finding food and foraging of the duck, which corresponds to the exploration and exploitation phases of the proposed DSA, respectively. The performance of the DSA is verified by using multiple CEC benchmark functions, where its statistical (best, mean, standard deviation, and average running-time) results are compared with seven well-known algorithms like Particle swarm optimization (PSO), Firefly algorithm (FA), Chicken swarm optimization (CSO), Grey wolf optimizer (GWO), Sine cosine algorithm (SCA), and Marine-predators algorithm (MPA), and Archimedes optimization algorithm (AOA). Moreover, the Wilcoxon rank-sum test, Friedman test, and convergence curves of the comparison results are utilized to prove the superiority of the DSA against other algorithms. The results demonstrate that DSA is a high-performance optimization method in terms of convergence speed and exploration-exploitation balance for solving the numerical optimization problems. Also, DSA is applied for the optimal design of six engineering constrained optimization problems and the node optimization deployment task of the Wireless Sensor Network (WSN). Overall, the comparison results revealed that the DSA is a promising and very competitive algorithm for solving different optimization problems.

We consider a prototypical problem of Bayesian inference for a structured spiked model: a low-rank signal is corrupted by additive noise. While both information-theoretic and algorithmic limits are well understood when the noise is i.i.d. Gaussian, the more realistic case of structured noise still proves to be challenging. To capture the structure while maintaining mathematical tractability, a line of work has focused on rotationally invariant noise. However, existing studies either provide sub-optimal algorithms or they are limited to a special class of noise ensembles. In this paper, we establish the first characterization of the information-theoretic limits for a noise matrix drawn from a general trace ensemble. These limits are then achieved by an efficient algorithm inspired by the theory of adaptive Thouless-Anderson-Palmer (TAP) equations. Our approach leverages tools from statistical physics (replica method) and random matrix theory (generalized spherical integrals), and it unveils the equivalence between the rotationally invariant model and a surrogate Gaussian model.

We study three systems of equations, together with a way to count the number of solutions. One of the results was used in the recent computation of D(9), the others have potential to speed up existing techniques in the future.

Differential abundance analysis is a key component of microbiome studies. While dozens of methods for it exist, currently, there is no consensus on the preferred methods. Correctness of results in differential abundance analysis is an ambiguous concept that cannot be evaluated without employing simulated data, but we argue that consistency of results across datasets should be considered as an essential quality of a well-performing method. We compared the performance of 14 differential abundance analysis methods employing datasets from 54 taxonomic profiling studies based on 16S rRNA gene or shotgun sequencing. For each method, we examined how the results replicated between random partitions of each dataset and between datasets from independent studies. While certain methods showed good consistency, some widely used methods were observed to produce a substantial number of conflicting findings. Overall, the highest consistency without unnecessary reduction in sensitivity was attained by analyzing relative abundances with a non-parametric method (Wilcoxon test or ordinal regression model) or linear regression (MaAsLin2). Comparable performance was also attained by analyzing presence/absence of taxa with logistic regression.

This paper studies the convergence of a spatial semidiscretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. For non-smooth initial values, the regularity of the mild solution is investigated, and an error estimate is derived with the spatial $ L^2 $-norm. For smooth initial values, two error estimates with the general spatial $ L^q $-norms are established.

Identifiability of statistical models is a key notion in unsupervised representation learning. Recent work of nonlinear independent component analysis (ICA) employs auxiliary data and has established identifiable conditions. This paper proposes a statistical model of two latent vectors with single auxiliary data generalizing nonlinear ICA, and establishes various identifiability conditions. Unlike previous work, the two latent vectors in the proposed model can have arbitrary dimensions, and this property enables us to reveal an insightful dimensionality relation among two latent vectors and auxiliary data in identifiability conditions. Furthermore, surprisingly, we prove that the indeterminacies of the proposed model has the same as \emph{linear} ICA under certain conditions: The elements in the latent vector can be recovered up to their permutation and scales. Next, we apply the identifiability theory to a statistical model for graph data. As a result, one of the identifiability conditions includes an appealing implication: Identifiability of the statistical model could depend on the maximum value of link weights in graph data. Then, we propose a practical method for identifiable graph embedding. Finally, we numerically demonstrate that the proposed method well-recovers the latent vectors and model identifiability clearly depends on the maximum value of link weights, which supports the implication of our theoretical results

The recent 1/2-equation model of turbulence is a simplification of the standard Kolmogorov-Prandtl 1-equation URANS model. Surprisingly, initial numerical tests indicated that the 1/2-equation model produces comparable velocity statistics at reduced cost. It is also a test problem and first step for developing numerical analysis to address a full 1-equation model. This report begins the numerical analysis of the 1/2 equation model. Stability, convergence and error estimates are proven for a semi-discrete and fully discrete approximation. Finally, numerical tests are conducted to validate our convergence theory.

The present paper is devoted to study the effect of connected and disconnected rotations of G\"odel algebras with operators grounded on directly indecomposable structures. The structures resulting from this construction we will present are nilpotent minimum (with or without negation fixpoint, depending on whether the rotation is connected or disconnected) with special modal operators defined on a directly indecomposable algebra. In this paper we will present a (quasi-)equational definition of these latter structures. Our main results show that directly indecomposable nilpotent minimum algebras (with or without negation fixpoint) with modal operators are fully characterized as connected and disconnected rotations of directly indecomposable G\"odel algebras endowed with modal operators.

Most state-of-the-art machine learning techniques revolve around the optimisation of loss functions. Defining appropriate loss functions is therefore critical to successfully solving problems in this field. We present a survey of the most commonly used loss functions for a wide range of different applications, divided into classification, regression, ranking, sample generation and energy based modelling. Overall, we introduce 33 different loss functions and we organise them into an intuitive taxonomy. Each loss function is given a theoretical backing and we describe where it is best used. This survey aims to provide a reference of the most essential loss functions for both beginner and advanced machine learning practitioners.

北京阿比特科技有限公司