We consider the problem of composed image retrieval that takes an input query consisting of an image and a modification text indicating the desired changes to be made on the image and retrieves images that match these changes. Current state-of-the-art techniques that address this problem use global features for the retrieval, resulting in incorrect localization of the regions of interest to be modified because of the global nature of the features, more so in cases of real-world, in-the-wild images. Since modifier texts usually correspond to specific local changes in an image, it is critical that models learn local features to be able to both localize and retrieve better. To this end, our key novelty is a new gradient-attention-based learning objective that explicitly forces the model to focus on the local regions of interest being modified in each retrieval step. We achieve this by first proposing a new visual image attention computation technique, which we call multi-modal gradient attention (MMGrad) that is explicitly conditioned on the modifier text. We next demonstrate how MMGrad can be incorporated into an end-to-end model training strategy with a new learning objective that explicitly forces these MMGrad attention maps to highlight the correct local regions corresponding to the modifier text. By training retrieval models with this new loss function, we show improved grounding by means of better visual attention maps, leading to better explainability of the models as well as competitive quantitative retrieval performance on standard benchmark datasets.
Multipliers are widely-used arithmetic operators in digital signal processing and machine learning circuits. Due to their relatively high complexity, they can have high latency and be a significant source of power consumption. One strategy to alleviate these limitations is to use approximate computing. This paper thus introduces an original FPGA-based approximate multiplier specifically optimized for machine learning computations. It utilizes dynamically reconfigurable lookup table (LUT) primitives in AMD-Xilinx technology to realize the core part of the computations. The paper provides an in-depth analysis of the hardware architecture, implementation outcomes, and accuracy evaluations of the multiplier proposed in INT8 precision. Implementation results on an AMD-Xilinx Kintex Ultrascale+ FPGA demonstrate remarkable savings of 64% and 67% in LUT utilization for signed multiplication and multiply-and-accumulation configurations, respectively, when compared to the standard Xilinx multiplier core. Accuracy measurements on four popular deep learning (DL) benchmarks indicate a minimal average accuracy decrease of less than 0.29% during post-training deployment, with the maximum reduction staying less than 0.33%. The source code of this work is available on GitHub.
Visual error metrics play a fundamental role in the quantification of perceived image similarity. Most recently, use cases for them in real-time applications have emerged, such as content-adaptive shading and shading reuse to increase performance and improve efficiency. A wide range of different metrics has been established, with the most sophisticated being capable of capturing the perceptual characteristics of the human visual system. However, their complexity, computational expense, and reliance on reference images to compare against prevent their generalized use in real-time, restricting such applications to using only the simplest available metrics. In this work, we explore the abilities of convolutional neural networks to predict a variety of visual metrics without requiring either reference or rendered images. Specifically, we train and deploy a neural network to estimate the visual error resulting from reusing shading or using reduced shading rates. The resulting models account for 70%-90% of the variance while achieving up to an order of magnitude faster computation times. Our solution combines image-space information that is readily available in most state-of-the-art deferred shading pipelines with reprojection from previous frames to enable an adequate estimate of visual errors, even in previously unseen regions. We describe a suitable convolutional network architecture and considerations for data preparation for training. We demonstrate the capability of our network to predict complex error metrics at interactive rates in a real-time application that implements content-adaptive shading in a deferred pipeline. Depending on the portion of unseen image regions, our approach can achieve up to $2\times$ performance compared to state-of-the-art methods.
Case-based reasoning (CBR) as a methodology for problem-solving can use any appropriate computational technique. This position paper argues that CBR researchers have somewhat overlooked recent developments in deep learning and large language models (LLMs). The underlying technical developments that have enabled the recent breakthroughs in AI have strong synergies with CBR and could be used to provide a persistent memory for LLMs to make progress towards Artificial General Intelligence.
Template matching is a fundamental problem in computer vision with applications in fields including object detection, image registration, and object tracking. Current methods rely on nearest-neighbour (NN) matching, where the query feature space is converted to NN space by representing each query pixel with its NN in the template. NN-based methods have been shown to perform better in occlusions, appearance changes, and non-rigid transformations; however, they scale poorly with high-resolution data and high feature dimensions. We present an NN-based method which efficiently reduces the NN computations and introduces filtering in the NN fields (NNFs). A vector quantization step is introduced before the NN calculation to represent the template with $k$ features, and the filter response over the NNFs is used to compare the template and query distributions over the features. We show that state-of-the-art performance is achieved in low-resolution data, and our method outperforms previous methods at higher resolution.
The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to be taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.
As a scene graph compactly summarizes the high-level content of an image in a structured and symbolic manner, the similarity between scene graphs of two images reflects the relevance of their contents. Based on this idea, we propose a novel approach for image-to-image retrieval using scene graph similarity measured by graph neural networks. In our approach, graph neural networks are trained to predict the proxy image relevance measure, computed from human-annotated captions using a pre-trained sentence similarity model. We collect and publish the dataset for image relevance measured by human annotators to evaluate retrieval algorithms. The collected dataset shows that our method agrees well with the human perception of image similarity than other competitive baselines.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.
Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.
We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.
Top-down visual attention mechanisms have been used extensively in image captioning and visual question answering (VQA) to enable deeper image understanding through fine-grained analysis and even multiple steps of reasoning. In this work, we propose a combined bottom-up and top-down attention mechanism that enables attention to be calculated at the level of objects and other salient image regions. This is the natural basis for attention to be considered. Within our approach, the bottom-up mechanism (based on Faster R-CNN) proposes image regions, each with an associated feature vector, while the top-down mechanism determines feature weightings. Applying this approach to image captioning, our results on the MSCOCO test server establish a new state-of-the-art for the task, achieving CIDEr / SPICE / BLEU-4 scores of 117.9, 21.5 and 36.9, respectively. Demonstrating the broad applicability of the method, applying the same approach to VQA we obtain first place in the 2017 VQA Challenge.