Recent works have shown that chain-of-thought (CoT) prompting can elicit language models to solve complex reasoning tasks, step-by-step. However, prompt-based CoT methods are dependent on very large models such as GPT-3 175B which are prohibitive to deploy at scale. In this paper, we use these large models as reasoning teachers to enable complex reasoning in smaller models and reduce model size requirements by several orders of magnitude. We propose Fine-tune-CoT, a method that generates reasoning samples from very large teacher models to fine-tune smaller models. We evaluate our method on a wide range of public models and complex tasks. We find that Fine-tune-CoT enables substantial reasoning capability in small models, far outperforming prompt-based baselines and even the teacher model in many tasks. Additionally, we extend our method by leveraging the teacher model's ability to generate multiple distinct rationales for each original sample. Enriching the fine-tuning data with such diverse reasoning results in a substantial performance boost across datasets, even for very small models. We conduct ablations and sample studies to understand the emergence of reasoning capabilities of student models. Our code implementation and data are available at //github.com/itsnamgyu/reasoning-teacher.
The development of deep learning based image representation learning (IRL) methods has attracted great attention for various image understanding problems. Most of these methods require the availability of a high quantity and quality of annotated training images, which can be time-consuming and costly to gather. To reduce labeling costs, crowdsourced data, automatic labeling procedures or citizen science projects can be considered. However, such approaches increase the risk of including label noise in training data. It may result in overfitting on noisy labels when discriminative reasoning is employed. This leads to sub-optimal learning procedures, and thus inaccurate characterization of images. To address this, we introduce a generative reasoning integrated label noise robust deep representation learning (GRID) approach. Our approach aims to model the complementary characteristics of discriminative and generative reasoning for IRL under noisy labels. To this end, we first integrate generative reasoning into discriminative reasoning through a supervised variational autoencoder. This allows GRID to automatically detect training samples with noisy labels. Then, through our label noise robust hybrid representation learning strategy, GRID adjusts the whole learning procedure for IRL of these samples through generative reasoning and that of other samples through discriminative reasoning. Our approach learns discriminative image representations while preventing interference of noisy labels independently from the IRL method being selected. Thus, unlike the existing methods, GRID does not depend on the type of annotation, neural network architecture, loss function or learning task, and thus can be directly utilized for various problems. Experimental results show its effectiveness compared to state-of-the-art methods. The code of GRID is publicly available at //github.com/gencersumbul/GRID.
This paper introduces an approach that combines the language reasoning capabilities of large language models (LLMs) with the benefits of local training to tackle complex, domain-specific tasks. Specifically, the authors demonstrate their approach by extracting structured condition codes from pathology reports. The proposed approach utilizes local LLMs, which can be fine-tuned to respond to specific generative instructions and provide structured outputs. The authors collected a dataset of over 150k uncurated surgical pathology reports, containing gross descriptions, final diagnoses, and condition codes. They trained different model architectures, including LLaMA, BERT and LongFormer and evaluated their performance. The results show that the LLaMA-based models significantly outperform BERT-style models across all evaluated metrics, even with extremely reduced precision. The LLaMA models performed especially well with large datasets, demonstrating their ability to handle complex, multi-label tasks. Overall, this work presents an effective approach for utilizing LLMs to perform domain-specific tasks using accessible hardware, with potential applications in the medical domain, where complex data extraction and classification are required.
Recent advances in the performance of large language models (LLMs) have sparked debate over whether, given sufficient training, high-level human abilities emerge in such generic forms of artificial intelligence (AI). Despite the exceptional performance of LLMs on a wide range of tasks involving natural language processing and reasoning, there has been sharp disagreement as to whether their abilities extend to more creative human abilities. A core example is the ability to interpret novel metaphors. Given the enormous and non-curated text corpora used to train LLMs, a serious obstacle to designing tests is the requirement of finding novel yet high-quality metaphors that are unlikely to have been included in the training data. Here we assessed the ability of GPT-4, a state-of-the-art large language model, to provide natural-language interpretations of novel literary metaphors drawn from Serbian poetry and translated into English. Despite exhibiting no signs of having been exposed to these metaphors previously, the AI system consistently produced detailed and incisive interpretations. Human judge - blind to the fact that an AI model was involved - rated metaphor interpretations generated by GPT-4 as superior to those provided by a group of college students. In interpreting reversed metaphors, GPT-4, as well as humans, exhibited signs of sensitivity to the Gricean cooperative principle. These results indicate that LLMs such as GPT-4 have acquired an emergent ability to interpret complex novel metaphors.
We equip a smaller Language Model to generalise to answering challenging compositional questions that have not been seen in training. To do so we propose a combination of multitask supervised pretraining on up to 93 tasks designed to instill diverse reasoning abilities, and a dense retrieval system that aims to retrieve a set of evidential paragraph fragments. Recent progress in question-answering has been achieved either through prompting methods against very large pretrained Language Models in zero or few-shot fashion, or by fine-tuning smaller models, sometimes in conjunction with information retrieval. We focus on the less explored question of the extent to which zero-shot generalisation can be enabled in smaller models with retrieval against a corpus within which sufficient information to answer a particular question may not exist. We establish strong baselines in this setting for diverse evaluation datasets (StrategyQA, CommonsenseQA, IIRC, DROP, Musique and ARC-DA), and show that performance can be significantly improved by adding retrieval-augmented training datasets which are designed to expose our models to a variety of heuristic reasoning strategies such as weighing partial evidence or ignoring an irrelevant context.
The process of conducting literature reviews is often time-consuming and labor-intensive. To streamline this process, I present an AI Literature Review Suite that integrates several functionalities to provide a comprehensive literature review. This tool leverages the power of open access science, large language models (LLMs) and natural language processing to enable the searching, downloading, and organizing of PDF files, as well as extracting content from articles. Semantic search queries are used for data retrieval, while text embeddings and summarization using LLMs present succinct literature reviews. Interaction with PDFs is enhanced through a user-friendly graphical user interface (GUI). The suite also features integrated programs for bibliographic organization, interaction and query, and literature review summaries. This tool presents a robust solution to automate and optimize the process of literature review in academic and industrial research.
This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels. It is based on two core designs. First, we develop an asymmetric encoder-decoder architecture, with an encoder that operates only on the visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original image from the latent representation and mask tokens. Second, we find that masking a high proportion of the input image, e.g., 75%, yields a nontrivial and meaningful self-supervisory task. Coupling these two designs enables us to train large models efficiently and effectively: we accelerate training (by 3x or more) and improve accuracy. Our scalable approach allows for learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge model achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data. Transfer performance in downstream tasks outperforms supervised pre-training and shows promising scaling behavior.
This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.
Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.
Link prediction for knowledge graphs is the task of predicting missing relationships between entities. Previous work on link prediction has focused on shallow, fast models which can scale to large knowledge graphs. However, these models learn less expressive features than deep, multi-layer models -- which potentially limits performance. In this work, we introduce ConvE, a multi-layer convolutional network model for link prediction, and report state-of-the-art results for several established datasets. We also show that the model is highly parameter efficient, yielding the same performance as DistMult and R-GCN with 8x and 17x fewer parameters. Analysis of our model suggests that it is particularly effective at modelling nodes with high indegree -- which are common in highly-connected, complex knowledge graphs such as Freebase and YAGO3. In addition, it has been noted that the WN18 and FB15k datasets suffer from test set leakage, due to inverse relations from the training set being present in the test set -- however, the extent of this issue has so far not been quantified. We find this problem to be severe: a simple rule-based model can achieve state-of-the-art results on both WN18 and FB15k. To ensure that models are evaluated on datasets where simply exploiting inverse relations cannot yield competitive results, we investigate and validate several commonly used datasets -- deriving robust variants where necessary. We then perform experiments on these robust datasets for our own and several previously proposed models, and find that ConvE achieves state-of-the-art Mean Reciprocal Rank across all datasets.