亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a novel Deep Reinforcement Learning (DRL) architecture for sequential decision processes under uncertainty, as encountered in inspection and maintenance (I&M) planning. Unlike other DRL algorithms for (I&M) planning, the proposed +RQN architecture dispenses with computing the belief state and directly handles erroneous observations instead. We apply the algorithm to a basic I&M planning problem for a one-component system subject to deterioration. In addition, we investigate the performance of Monte Carlo tree search for the I&M problem and compare it to the +RQN. The comparison includes a statistical analysis of the two methods' resulting policies, as well as their visualization in the belief space.

相關內容

The growing use of large machine learning models highlights concerns about their increasing computational demands. While the energy consumption of their training phase has received attention, fewer works have considered the inference phase. For ML inference, the binding of ML models to the ML system for user access, known as ML serving, is a critical yet understudied step for achieving efficiency in ML applications. We examine the literature in ML architectural design decisions and Green AI, with a special focus on ML serving. The aim is to analyze ML serving architectural design decisions for the purpose of understanding and identifying them with respect to quality characteristics from the point of view of researchers and practitioners in the context of ML serving literature. Our results (i) identify ML serving architectural design decisions along with their corresponding components and associated technological stack, and (ii) provide an overview of the quality characteristics studied in the literature, including energy efficiency. This preliminary study is the first step in our goal to achieve green ML serving. Our analysis may aid ML researchers and practitioners in making green-aware architecture design decisions when serving their models.

Mendelian randomization (MR) is an instrumental variable (IV) approach to infer causal relationships between exposures and outcomes with genome-wide association studies (GWAS) summary data. However, the multivariable inverse-variance weighting (IVW) approach, which serves as the foundation for most MR approaches, cannot yield unbiased causal effect estimates in the presence of many weak IVs. To address this problem, we proposed the MR using Bias-corrected Estimating Equation (MRBEE) that can infer unbiased causal relationships with many weak IVs and account for horizontal pleiotropy simultaneously. While the practical significance of MRBEE was demonstrated in our parallel work (Lorincz-Comi (2023)), this paper established the statistical theories of multivariable IVW and MRBEE with many weak IVs. First, we showed that the bias of the multivariable IVW estimate is caused by the error-in-variable bias, whose scale and direction are inflated and influenced by weak instrument bias and sample overlaps of exposures and outcome GWAS cohorts, respectively. Second, we investigated the asymptotic properties of multivariable IVW and MRBEE, showing that MRBEE outperforms multivariable IVW regarding unbiasedness of causal effect estimation and asymptotic validity of causal inference. Finally, we applied MRBEE to examine myopia and revealed that education and outdoor activity are causal to myopia whereas indoor activity is not.

Increasing the degree of digitisation and automation in the concrete production process can play a crucial role in reducing the CO$_2$ emissions that are associated with the production of concrete. In this paper, a method is presented that makes it possible to predict the properties of fresh concrete during the mixing process based on stereoscopic image sequences of the concretes flow behaviour. A Convolutional Neural Network (CNN) is used for the prediction, which receives the images supported by information on the mix design as input. In addition, the network receives temporal information in the form of the time difference between the time at which the images are taken and the time at which the reference values of the concretes are carried out. With this temporal information, the network implicitly learns the time-dependent behaviour of the concretes properties. The network predicts the slump flow diameter, the yield stress and the plastic viscosity. The time-dependent prediction potentially opens up the pathway to determine the temporal development of the fresh concrete properties already during mixing. This provides a huge advantage for the concrete industry. As a result, countermeasures can be taken in a timely manner. It is shown that an approach based on depth and optical flow images, supported by information of the mix design, achieves the best results.

We propose a novel neural network architecture based on conformer transducer that adds contextual information flow to the ASR systems. Our method improves the accuracy of recognizing uncommon words while not harming the word error rate of regular words. We explore the uncommon words accuracy improvement when we use the new model and/or shallow fusion with context language model. We found that combination of both provides cumulative gain in uncommon words recognition accuracy.

The study on the generating function approach to entropy become popular as it generates several well-known entropy measures discussed in the literature. In this work, we define the weighted cumulative residual entropy generating function (WCREGF) and study its properties. We then introduce the dynamic weighted cumulative residual entropy generating function (DWCREGF). It is shown that the DWCREGF determines the distribution uniquely. We study some characterization results using the relationship between the DWCREGF and the hazard rate and/or the mean residual life function. Using a characterization based on DWCREGF, we develop a new goodness fit test for Rayleigh distribution. A Monte Carlo simulation study is conducted to evaluate the proposed test. Finally, the test is illustrated using two real data sets.

We consider clustering in group decision making where the opinions are given by pairwise comparison matrices. In particular, the k-medoids model is suggested to classify the matrices as it has a linear programming problem formulation. Its objective function depends on the measure of dissimilarity between the matrices but not on the weights derived from them. With one cluster, our methodology provides an alternative to the conventional aggregation procedures. It can also be used to quantify the reliability of the aggregation. The proposed theoretical framework is applied to a large-scale experimental dataset, on which it is able to automatically detect some mistakes made by the decision-makers.

The Discrete Event System Specification formalism (DEVS), which supports hierarchical and modular model composition, has been widely used to understand, analyze and develop a variety of systems. DEVS has been implemented in various languages and platforms over the years. The DEVStone benchmark was conceived to generate a set of models with varied structure and behavior, and to automate the evaluation of the performance of DEVS-based simulators. However, DEVStone is still in a preliminar phase and more model analysis is required. In this paper, we revisit DEVStone introducing new equations to compute the number of events triggered. We also introduce a new benchmark, called HOmem, designed as an alternative version of HOmod, with similar CPU and memory requirements, but with an easier implementation and analytically more manageable. Finally, we compare both the performance and memory footprint of five different DEVS simulators in two different hardware platforms.

This document contains lectures and practical experimentations using Matlab and implementing a system which is actually correctly classifying three words (one, two and three) with the help of a very small database. To achieve this performance, it uses speech modeling specificities, powerful computer algorithms (dynamic time warping and Dijktra's algorithm) and machine learning (nearest neighbor). This document introduces also some machine learning evaluation metrics.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

北京阿比特科技有限公司