亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Classification of unlabeled data is usually achieved by supervised learning from labeled samples. Although there exist many sophisticated supervised machine learning methods that can predict the missing labels with a high level of accuracy, they often lack the required transparency in situations where it is important to provide interpretable results and meaningful measures of confidence. Body fluid classification of forensic casework data is the case in point. We develop a new Biclustering Dirichlet Process (BDP), with a three-level hierarchy of clustering, and a model-based approach to classification which adapts to block structure in the data matrix. As the class labels of some observations are missing, the number of rows in the data matrix for each class is unknown. The BDP handles this and extends existing biclustering methods by simultaneously biclustering multiple matrices each having a randomly variable number of rows. We demonstrate our method by applying it to the motivating problem, which is the classification of body fluids based on mRNA profiles taken from crime scenes. The analyses of casework-like data show that our method is interpretable and produces well-calibrated posterior probabilities. Our model can be more generally applied to other types of data with a similar structure to the forensic data.

相關內容

One major problem in the study of numerical semigroups is determining the growth of the semigroup tree. In the present work, infinite chains of numerical semigroups in the semigroup tree, firstly introduced in Bras-Amor\'os and Nulygin (2009), are studied. Computational results show that these chains are rare, but without them the tree would not be infinite. It is proved that for each genus $g\geq 5$ there are more semigroups of that genus not belonging to infinite chains than semigroups belonging. The reference Bras-Amor\'os and Bulygin (2009) presented a characterization of the semigroups that belong to infinite chains in terms of the coprimality of the left elements of the semigroup as well as a result on the cardinality of the set of infinite chains to which a numerical semigroup belongs in terms of the primality of the greatest common divisor of these left elements. We revisit these results and fix an imprecision on the cardinality of the set of infinite chains to which a semigroup belongs in the case when the greatest common divisor of the left elements is a prime number. We then look at infinite chains in subtrees with fixed multiplicity. When the multiplicity is a prime number there is only one infinite chain in the tree of semigroups with such multiplicity. When the multpliplicity is $4$ or $6$ we prove a self-replication behavior in the subtree and prove a formula for the number of semigroups in infinite chains of a given genus and multiplicity $4$ and $6$, respectively.

The forecasting and computation of the stability of chaotic systems from partial observations are tasks for which traditional equation-based methods may not be suitable. In this computational paper, we propose data-driven methods to (i) infer the dynamics of unobserved (hidden) chaotic variables (full-state reconstruction); (ii) time forecast the evolution of the full state; and (iii) infer the stability properties of the full state. The tasks are performed with long short-term memory (LSTM) networks, which are trained with observations (data) limited to only part of the state: (i) the low-to-high resolution LSTM (LH-LSTM), which takes partial observations as training input, and requires access to the full system state when computing the loss; and (ii) the physics-informed LSTM (PI-LSTM), which is designed to combine partial observations with the integral formulation of the dynamical system's evolution equations. First, we derive the Jacobian of the LSTMs. Second, we analyse a chaotic partial differential equation, the Kuramoto-Sivashinsky (KS), and the Lorenz-96 system. We show that the proposed networks can forecast the hidden variables, both time-accurately and statistically. The Lyapunov exponents and covariant Lyapunov vectors, which characterize the stability of the chaotic attractors, are correctly inferred from partial observations. Third, the PI-LSTM outperforms the LH-LSTM by successfully reconstructing the hidden chaotic dynamics when the input dimension is smaller or similar to the Kaplan-Yorke dimension of the attractor. This work opens new opportunities for reconstructing the full state, inferring hidden variables, and computing the stability of chaotic systems from partial data.

We propose an end-to-end Automatic Speech Recognition (ASR) system that can be trained on transcribed speech data, text-only data, or a mixture of both. The proposed model uses an integrated auxiliary block for text-based training. This block combines a non-autoregressive multi-speaker text-to-mel-spectrogram generator with a GAN-based enhancer to improve the spectrogram quality. The proposed system can generate a mel-spectrogram dynamically during training. It can be used to adapt the ASR model to a new domain by using text-only data from this domain. We demonstrate that the proposed training method significantly improves ASR accuracy compared to the system trained on transcribed speech only. It also surpasses cascade TTS systems with the vocoder in the adaptation quality and training speed.

The expected Euler characteristic (EEC) method is an integral-geometric method used to approximate the tail probability of the maximum of a random field on a manifold. Noting that the largest eigenvalue of a real-symmetric or Hermitian matrix is the maximum of the quadratic form of a unit vector, we provide EEC approximation formulas for the tail probability of the largest eigenvalue of orthogonally invariant random matrices of a large class. For this purpose, we propose a version of a skew-orthogonal polynomial by adding a side condition such that it is uniquely defined, and describe the EEC formulas in terms of the (skew-)orthogonal polynomials. In addition, for the classical random matrices (Gaussian, Wishart, and multivariate beta matrices), we analyze the limiting behavior of the EEC approximation as the matrix size goes to infinity under the so-called edge-asymptotic normalization. It is shown that the limit of the EEC formula approximates well the Tracy-Widom distributions in the upper tail area, as does the EEC formula when the matrix size is finite.

In this paper, we introduce a novel numerical approach for approximating the SIR model in epidemiology. Our method enhances the existing linearization procedure by incorporating a suitable relaxation term to tackle the transcendental equation of nonlinear type. Developed within the continuous framework, our relaxation method is explicit and easy to implement, relying on a sequence of linear differential equations. This approach yields accurate approximations in both discrete and analytical forms. Through rigorous analysis, we prove that, with an appropriate choice of the relaxation parameter, our numerical scheme is non-negativity-preserving and globally strongly convergent towards the true solution. These theoretical findings have not received sufficient attention in various existing SIR solvers. We also extend the applicability of our relaxation method to handle some variations of the traditional SIR model. Finally, we present numerical examples using simulated data to demonstrate the effectiveness of our proposed method.

Long-span bridges are subjected to a multitude of dynamic excitations during their lifespan. To account for their effects on the structural system, several load models are used during design to simulate the conditions the structure is likely to experience. These models are based on different simplifying assumptions and are generally guided by parameters that are stochastically identified from measurement data, making their outputs inherently uncertain. This paper presents a probabilistic physics-informed machine-learning framework based on Gaussian process regression for reconstructing dynamic forces based on measured deflections, velocities, or accelerations. The model can work with incomplete and contaminated data and offers a natural regularization approach to account for noise in the measurement system. An application of the developed framework is given by an aerodynamic analysis of the Great Belt East Bridge. The aerodynamic response is calculated numerically based on the quasi-steady model, and the underlying forces are reconstructed using sparse and noisy measurements. Results indicate a good agreement between the applied and the predicted dynamic load and can be extended to calculate global responses and the resulting internal forces. Uses of the developed framework include validation of design models and assumptions, as well as prognosis of responses to assist in damage detection and structural health monitoring.

Confidence intervals based on the central limit theorem (CLT) are a cornerstone of classical statistics. Despite being only asymptotically valid, they are ubiquitous because they permit statistical inference under very weak assumptions, and can often be applied to problems even when nonasymptotic inference is impossible. This paper introduces time-uniform analogues of such asymptotic confidence intervals. To elaborate, our methods take the form of confidence sequences (CS) -- sequences of confidence intervals that are uniformly valid over time. CSs provide valid inference at arbitrary stopping times, incurring no penalties for "peeking" at the data, unlike classical confidence intervals which require the sample size to be fixed in advance. Existing CSs in the literature are nonasymptotic, and hence do not enjoy the aforementioned broad applicability of asymptotic confidence intervals. Our work bridges the gap by giving a definition for "asymptotic CSs", and deriving a universal asymptotic CS that requires only weak CLT-like assumptions. While the CLT approximates the distribution of a sample average by that of a Gaussian at a fixed sample size, we use strong invariance principles (stemming from the seminal 1960s work of Strassen and improvements by Koml\'os, Major, and Tusn\'ady) to uniformly approximate the entire sample average process by an implicit Gaussian process. As an illustration of our theory, we derive asymptotic CSs for the average treatment effect using efficient estimators in observational studies (for which no nonasymptotic bounds can exist even in the fixed-time regime) as well as randomized experiments, enabling causal inference that can be continuously monitored and adaptively stopped.

Connectionist temporal classification (CTC) and attention-based encoder decoder (AED) joint training has been widely applied in automatic speech recognition (ASR). Unlike most hybrid models that separately calculate the CTC and AED losses, our proposed integrated-CTC utilizes the attention mechanism of AED to guide the output of CTC. In this paper, we employ two fusion methods, namely direct addition of logits (DAL) and preserving the maximum probability (PMP). We achieve dimensional consistency by adaptively affine transforming the attention results to match the dimensions of CTC. To accelerate model convergence and improve accuracy, we introduce auxiliary loss regularization for accelerated convergence. Experimental results demonstrate that the DAL method performs better in attention rescoring, while the PMP method excels in CTC prefix beam search and greedy search.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司