亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Implicit gender bias in Large Language Models (LLMs) is a well-documented problem, and implications of gender introduced into automatic translations can perpetuate real-world biases. However, some LLMs use heuristics or post-processing to mask such bias, making investigation difficult. Here, we examine bias in LLMss via back-translation, using the DeepL translation API to investigate the bias evinced when repeatedly translating a set of 56 Software Engineering tasks used in a previous study. Each statement starts with 'she', and is translated first into a 'genderless' intermediate language then back into English; we then examine pronoun- choice in the back-translated texts. We expand prior research in the following ways: (1) by comparing results across five intermediate languages, namely Finnish, Indonesian, Estonian, Turkish and Hungarian; (2) by proposing a novel metric for assessing the variation in gender implied in the repeated translations, avoiding the over-interpretation of individual pronouns, apparent in earlier work; (3) by investigating sentence features that drive bias; (4) and by comparing results from three time-lapsed datasets to establish the reproducibility of the approach. We found that some languages display similar patterns of pronoun use, falling into three loose groups, but that patterns vary between groups; this underlines the need to work with multiple languages. We also identify the main verb appearing in a sentence as a likely significant driver of implied gender in the translations. Moreover, we see a good level of replicability in the results, and establish that our variation metric proves robust despite an obvious change in the behaviour of the DeepL translation API during the course of the study. These results show that the back-translation method can provide further insights into bias in language models.

相關內容

Owing to their powerful semantic reasoning capabilities, Large Language Models (LLMs) have been effectively utilized as recommenders, achieving impressive performance. However, the high inference latency of LLMs significantly restricts their practical deployment. To address this issue, this work investigates knowledge distillation from cumbersome LLM-based recommendation models to lightweight conventional sequential models. It encounters three challenges: 1) the teacher's knowledge may not always be reliable; 2) the capacity gap between the teacher and student makes it difficult for the student to assimilate the teacher's knowledge; 3) divergence in semantic space poses a challenge to distill the knowledge from embeddings. To tackle these challenges, this work proposes a novel distillation strategy, DLLM2Rec, specifically tailored for knowledge distillation from LLM-based recommendation models to conventional sequential models. DLLM2Rec comprises: 1) Importance-aware ranking distillation, which filters reliable and student-friendly knowledge by weighting instances according to teacher confidence and student-teacher consistency; 2) Collaborative embedding distillation integrates knowledge from teacher embeddings with collaborative signals mined from the data. Extensive experiments demonstrate the effectiveness of the proposed DLLM2Rec, boosting three typical sequential models with an average improvement of 47.97%, even enabling them to surpass LLM-based recommenders in some cases.

Many of the recent capabilities demonstrated by Large Language Models (LLMs) arise primarily from their ability to exploit contextual information. In this paper, we explore ways to improve reasoning capabilities of LLMs through (1) exploration of different chains of thought and (2) validation of the individual steps of the reasoning process. We propose three general principles that a model should adhere to while reasoning: (i) Relevance, (ii) Mathematical Accuracy, and (iii) Logical Consistency. We apply these constraints to the reasoning steps generated by the LLM to improve the accuracy of the final generation. The constraints are applied in the form of verifiers: the model itself is asked to verify if the generated steps satisfy each constraint. To further steer the generations towards high-quality solutions, we use the perplexity of the reasoning steps as an additional verifier. We evaluate our method on 4 distinct types of reasoning tasks, spanning a total of 9 different datasets. Experiments show that our method is always better than vanilla generation, and, in 6 out of the 9 datasets, it is better than best-of N sampling which samples N reasoning chains and picks the lowest perplexity generation.

Comprehensive evaluation is one of the basis of experimental science. In High-Performance Graph Processing, a thorough evaluation of contributions becomes more achievable by supporting common input formats over different frameworks. However, each framework creates its specific format, which may not support reading large-scale real-world graph datasets. This shows a demand for high-performance libraries capable of loading graphs to (i)~accelerate designing new graph algorithms, (ii)~to evaluate the contributions on a wide range of graph algorithms, and (iii)~to facilitate easy and fast comparison over different graph frameworks. To that end, we present ParaGrapher, a high-performance API and library for loading large-scale and compressed graphs. ParaGrapher supports different types of requests for accessing graphs in shared- and distributed-memory and out-of-core graph processing. We explain the design of ParaGrapher and present a performance model of graph decompression, which is used for evaluation of ParaGrapher over three storage types. Our evaluation shows that by decompressing compressed graphs in WebGraph format, ParaGrapher delivers up to 3.2 times speedup in loading and up to 5.2 times speedup in end-to-end execution in comparison to the binary and textual formats. ParaGrapher is available online on //blogs.qub.ac.uk/DIPSA/ParaGrapher/.

Despite the earlier claim of "Death of Distance", recent studies revealed that geographical proximity still greatly influences link formation in online social networks. However, it is unclear how physical distances are intertwined with users' online behaviors in a virtual world. We study the role of spatial dependence on a global online social network with a dyadic Logit model. Results show country-specific patterns for distance effect on probabilities to build connections. Effects are stronger when the possibility for two people to meet in person exists. Relative to weak ties, dependence on proximity is looser for strong social ties.

Recently, the mysterious In-Context Learning (ICL) ability exhibited by Transformer architectures, especially in large language models (LLMs), has sparked significant research interest. However, the resilience of Transformers' in-context learning capabilities in the presence of noisy samples, prevalent in both training corpora and prompt demonstrations, remains underexplored. In this paper, inspired by prior research that studies ICL ability using simple function classes, we take a closer look at this problem by investigating the robustness of Transformers against noisy labels. Specifically, we first conduct a thorough evaluation and analysis of the robustness of Transformers against noisy labels during in-context learning and show that they exhibit notable resilience against diverse types of noise in demonstration labels. Furthermore, we delve deeper into this problem by exploring whether introducing noise into the training set, akin to a form of data augmentation, enhances such robustness during inference, and find that such noise can indeed improve the robustness of ICL. Overall, our fruitful analysis and findings provide a comprehensive understanding of the resilience of Transformer models against label noises during ICL and provide valuable insights into the research on Transformers in natural language processing. Our code is available at //github.com/InezYu0928/in-context-learning.

Generative AI (GenAI) has witnessed remarkable progress in recent years and demonstrated impressive performance in various generation tasks in different domains such as computer vision and computational design. Many researchers have attempted to integrate GenAI into visualization framework, leveraging the superior generative capacity for different operations. Concurrently, recent major breakthroughs in GenAI like diffusion model and large language model have also drastically increase the potential of GenAI4VIS. From a technical perspective, this paper looks back on previous visualization studies leveraging GenAI and discusses the challenges and opportunities for future research. Specifically, we cover the applications of different types of GenAI methods including sequence, tabular, spatial and graph generation techniques for different tasks of visualization which we summarize into four major stages: data enhancement, visual mapping generation, stylization and interaction. For each specific visualization sub-task, we illustrate the typical data and concrete GenAI algorithms, aiming to provide in-depth understanding of the state-of-the-art GenAI4VIS techniques and their limitations. Furthermore, based on the survey, we discuss three major aspects of challenges and research opportunities including evaluation, dataset, and the gap between end-to-end GenAI and generative algorithms. By summarizing different generation algorithms, their current applications and limitations, this paper endeavors to provide useful insights for future GenAI4VIS research.

Neural Machine Translation (NMT) is the task of translating a text from one language to another with the use of a trained neural network. Several existing works aim at incorporating external information into NMT models to improve or control predicted translations (e.g. sentiment, politeness, gender). In this work, we propose to improve translation quality by adding another external source of information: the automatically recognized emotion in the voice. This work is motivated by the assumption that each emotion is associated with a specific lexicon that can overlap between emotions. Our proposed method follows a two-stage procedure. At first, we select a state-of-the-art Speech Emotion Recognition (SER) model to predict dimensional emotion values from all input audio in the dataset. Then, we use these predicted emotions as source tokens added at the beginning of input texts to train our NMT model. We show that integrating emotion information, especially arousal, into NMT systems leads to better translations.

Reinforcing or even exacerbating societal biases and inequalities will increase significantly as generative AI increasingly produces useful artifacts, from text to images and beyond, for the real world. We address these issues by formally characterizing the notion of fairness for generative AI as a basis for monitoring and enforcing fairness. We define two levels of fairness using the notion of infinite sequences of abstractions of AI-generated artifacts such as text or images. The first is the fairness demonstrated on the generated sequences, which is evaluated only on the outputs while agnostic to the prompts and models used. The second is the inherent fairness of the generative AI model, which requires that fairness be manifested when input prompts are neutral, that is, they do not explicitly instruct the generative AI to produce a particular type of output. We also study relative intersectional fairness to counteract the combinatorial explosion of fairness when considering multiple categories together with lazy fairness enforcement. Finally, fairness monitoring and enforcement are tested against some current generative AI models.

In the sixth-generation (6G), the extremely large-scale multiple-input-multiple-output (XL-MIMO) is considered a promising enabling technology. With the further expansion of array element number and frequency bands, near-field effects will be more likely to occur in 6G communication systems. The near-field radio communications (NFRC) will become crucial in 6G communication systems. It is known that the channel research is very important for the development and performance evaluation of the communication systems. In this paper, we will systematically investigate the channel measurements and modeling for the emerging NFRC. First, the principle design of massive MIMO channel measurement platform are solved. Second, an indoor XL-MIMO channel measurement campaign with 1600 array elements is conducted, and the channel characteristics are extracted and validated in the near-field region. Then, the outdoor XL-MIMO channel measurement campaign with 320 array elements is conducted, and the channel characteristics are extracted and modeled from near-field to far-field (NF-FF) region. The spatial non-stationary characteristics of angular spread at the transmitting end are more important in modeling. We hope that this work will give some reference to the near-field and far-field research for 6G.

We consider a graph coloring algorithm that processes vertices in order taken uniformly at random and assigns colors to them using First-Fit strategy. We show that this algorithm uses, in expectation, at most $(\frac{1}{2} + o(1))\cdot \ln n \,/\, \ln\ln n$ different colors to color any forest with $n$ vertices. We also construct a family of forests that shows that this bound is best possible.

北京阿比特科技有限公司