亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Locating an object is key in many applications, namely in high-stakes real-world scenarios, like detecting humans or obstacles in vehicular networks. In such applications, pointwise estimates are not enough, and the full area of locations compatible with acquired measurements should be available, for robust and safe navigation. This paper presents a scalable algorithm for creating a superset of all possible target locations, given range measurements with bounded error. The assumption of bounded error is mild, since both hardware characteristics and application scenario impose upper bounds on measurement errors, and the bounded set can be taken from confidence regions of the error distributions. We construct the superset through convex relaxations that use Linear Fractional Representations (LFRs), a well-known technique in robust control. Additionally, we also provide a statistical interpretation for the set of possible target positions, considering the framework of robust estimation. Finally, we provide empirical validation by comparing our LFR method with a standard semidefinite relaxation. Our approach has shown to pay off for small to moderate noise levels: the supersets created by our method are tighter than the benchmark ones being about 20% smaller in size. Furthermore, our method tends to be tight because the size of the supersets is, on median terms, within a 3% margin of a lower bound computed via grid search.

相關內容

We argue that a valuable perspective on when a model learns \textit{good} representations is that inputs that are mapped to similar representations by the model should be perceived similarly by humans. We use \textit{representation inversion} to generate multiple inputs that map to the same model representation, then quantify the perceptual similarity of these inputs via human surveys. Our approach yields a measure of the extent to which a model is aligned with human perception. Using this measure of alignment, we evaluate models trained with various learning paradigms (\eg~supervised and self-supervised learning) and different training losses (standard and robust training). Our results suggest that the alignment of representations with human perception provides useful additional insights into the qualities of a model. For example, we find that alignment with human perception can be used as a measure of trust in a model's prediction on inputs where different models have conflicting outputs. We also find that various properties of a model like its architecture, training paradigm, training loss, and data augmentation play a significant role in learning representations that are aligned with human perception.

Interpreting objects with basic geometric primitives has long been studied in computer vision. Among geometric primitives, superquadrics are well known for their simple implicit expressions and capability of representing a wide range of shapes with few parameters. However, as the first and foremost step, recovering superquadrics accurately and robustly from 3D data still remains challenging. The existing methods are subject to local optima and are sensitive to noise and outliers in real-world scenarios, resulting in frequent failure in capturing geometric shapes. In this paper, we propose the first probabilistic method to recover superquadrics from point clouds. Our method builds a Gaussian-uniform mixture model (GUM) on the parametric surface of a superquadric, which explicitly models the generation of outliers and noise. The superquadric recovery is formulated as a Maximum Likelihood Estimation (MLE) problem. We propose an algorithm, Expectation, Maximization, and Switching (EMS), to solve this problem, where: (1) outliers are predicted from the posterior perspective; (2) the superquadric parameter is optimized by the trust-region reflective algorithm; and (3) local optima are avoided by globally searching and switching among parameters encoding similar superquadrics. We show that our method can be extended to the multi-superquadrics recovery for complex objects. The proposed method outperforms the state-of-the-art in terms of accuracy, efficiency, and robustness on both synthetic and real-world datasets. Codes will be released.

In this paper a class of optimization problems with uncertain linear constraints is discussed. It is assumed that the constraint coefficients are random vectors whose probability distributions are only partially known. Possibility theory is used to model the imprecise probabilities. In one of the interpretations, a possibility distribution (a membership function of a fuzzy set) in the set of coefficient realizations induces a necessity measure, which in turn defines a family of probability distributions in this set. The distributionally robust approach is then used to transform the imprecise constraints into deterministic counterparts. Namely, the uncertain left-had side of each constraint is replaced with the expected value with respect to the worst probability distribution that can occur. It is shown how to represent the resulting problem by using linear or second order cone constraints. This leads to problems which are computationally tractable for a wide class of optimization models, in particular for linear programming.

We establish a generic upper bound ExpTime for reasoning with global assumptions (also known as TBoxes) in coalgebraic modal logics. Unlike earlier results of this kind, our bound does not require a tractable set of tableau rules for the instance logics, so that the result applies to wider classes of logics. Examples are Presburger modal logic, which extends graded modal logic with linear inequalities over numbers of successors, and probabilistic modal logic with polynomial inequalities over probabilities. We establish the theoretical upper bound using a type elimination algorithm. We also provide a global caching algorithm that potentially avoids building the entire exponential-sized space of candidate states, and thus offers a basis for practical reasoning. This algorithm still involves frequent fixpoint computations; we show how these can be handled efficiently in a concrete algorithm modelled on Liu and Smolka's linear-time fixpoint algorithm. Finally, we show that the upper complexity bound is preserved under adding nominals to the logic, i.e. in coalgebraic hybrid logic.

In this work, we look at a two-sample problem within the framework of Gaussian graphical models. When the global hypothesis of equality of two distributions is rejected, the interest is usually in localizing the source of difference. Motivated by the idea that diseases can be seen as system perturbations, and by the need to distinguish between the origin of perturbation and components affected by the perturbation, we introduce the concept of a minimal seed set, and its graphical counterpart a graphical seed set. They intuitively consist of variables driving the difference between the two conditions. We propose a simple testing procedure, linear in the number of nodes, to estimate the graphical seed set from data, and study its finite sample behavior with a stimulation study. We illustrate our approach in the context of gene set analysis by means of a publicly available gene expression dataset.

This paper studies distributed binary test of statistical independence under communication (information bits) constraints. While testing independence is very relevant in various applications, distributed independence test is particularly useful for event detection in sensor networks where data correlation often occurs among observations of devices in the presence of a signal of interest. By focusing on the case of two devices because of their tractability, we begin by investigating conditions on Type I error probability restrictions under which the minimum Type II error admits an exponential behavior with the sample size. Then, we study the finite sample-size regime of this problem. We derive new upper and lower bounds for the gap between the minimum Type II error and its exponential approximation under different setups, including restrictions imposed on the vanishing Type I error probability. Our theoretical results shed light on the sample-size regimes at which approximations of the Type II error probability via error exponents became informative enough in the sense of predicting well the actual error probability. We finally discuss an application of our results where the gap is evaluated numerically, and we show that exponential approximations are not only tractable but also a valuable proxy for the Type II probability of error in the finite-length regime.

Minimizing cross-entropy over the softmax scores of a linear map composed with a high-capacity encoder is arguably the most popular choice for training neural networks on supervised learning tasks. However, recent works show that one can directly optimize the encoder instead, to obtain equally (or even more) discriminative representations via a supervised variant of a contrastive objective. In this work, we address the question whether there are fundamental differences in the sought-for representation geometry in the output space of the encoder at minimal loss. Specifically, we prove, under mild assumptions, that both losses attain their minimum once the representations of each class collapse to the vertices of a regular simplex, inscribed in a hypersphere. We provide empirical evidence that this configuration is attained in practice and that reaching a close-to-optimal state typically indicates good generalization performance. Yet, the two losses show remarkably different optimization behavior. The number of iterations required to perfectly fit to data scales superlinearly with the amount of randomly flipped labels for the supervised contrastive loss. This is in contrast to the approximately linear scaling previously reported for networks trained with cross-entropy.

This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.

The main contribution of this paper is a new submap joining based approach for solving large-scale Simultaneous Localization and Mapping (SLAM) problems. Each local submap is independently built using the local information through solving a small-scale SLAM; the joining of submaps mainly involves solving linear least squares and performing nonlinear coordinate transformations. Through approximating the local submap information as the state estimate and its corresponding information matrix, judiciously selecting the submap coordinate frames, and approximating the joining of a large number of submaps by joining only two maps at a time, either sequentially or in a more efficient Divide and Conquer manner, the nonlinear optimization process involved in most of the existing submap joining approaches is avoided. Thus the proposed submap joining algorithm does not require initial guess or iterations since linear least squares problems have closed-form solutions. The proposed Linear SLAM technique is applicable to feature-based SLAM, pose graph SLAM and D-SLAM, in both two and three dimensions, and does not require any assumption on the character of the covariance matrices. Simulations and experiments are performed to evaluate the proposed Linear SLAM algorithm. Results using publicly available datasets in 2D and 3D show that Linear SLAM produces results that are very close to the best solutions that can be obtained using full nonlinear optimization algorithm started from an accurate initial guess. The C/C++ and MATLAB source codes of Linear SLAM are available on OpenSLAM.

We introduce a new approach for topic modeling that is supervised by survival analysis. Specifically, we build on recent work on unsupervised topic modeling with so-called anchor words by providing supervision through an elastic-net regularized Cox proportional hazards model. In short, an anchor word being present in a document provides strong indication that the document is partially about a specific topic. For example, by seeing "gallstones" in a document, we are fairly certain that the document is partially about medicine. Our proposed method alternates between learning a topic model and learning a survival model to find a local minimum of a block convex optimization problem. We apply our proposed approach to predicting how long patients with pancreatitis admitted to an intensive care unit (ICU) will stay in the ICU. Our approach is as accurate as the best of a variety of baselines while being more interpretable than any of the baselines.

北京阿比特科技有限公司