We propose in this work to employ the Box-LASSO, a variation of the popular LASSO method, as a low-complexity decoder in a massive multiple-input multiple-output (MIMO) wireless communication system. The Box-LASSO is mainly useful for detecting simultaneously structured signals such as signals that are known to be sparse and bounded. One modulation technique that generates essentially sparse and bounded constellation points is the so-called generalized space-shift keying (GSSK) modulation. In this direction, we derive high dimensional sharp characterizations of various performance measures of the Box-LASSO such as the mean square error, probability of support recovery, and the element error rate, under independent and identically distributed (i.i.d.) Gaussian channels that are not perfectly known. In particular, the analytical characterizations can be used to demonstrate performance improvements of the Box-LASSO as compared to the widely used standard LASSO. Then, we can use these measures to optimally tune the involved hyper-parameters of Box-LASSO such as the regularization parameter. In addition, we derive optimum power allocation and training duration schemes in a training-based massive MIMO system. Monte Carlo simulations are used to validate these premises and to show the sharpness of the derived analytical results.
This paper considers the uplink of user-centric cell-free massive MIMO (multiple-input multiple-output) systems. We utilize the user-centric dynamic cooperation clustering (DCC) framework and derive the achievable spectral efficiency with two-layer decoding that is divided between the access points and the central processing unit (CPU). This decoding method is also known as large-scale fading decoding (LSFD). The fronthaul signaling load is analyzed and a nearly optimal second-layer decoding scheme at the CPU is proposed to reduce the fronthaul requirements compared to the optimal scheme. We also revisit the joint optimization of LSFD weights and uplink power control and show that the corresponding max-min fair optimization problem can be solved optimally via an efficient fixed-point algorithm. We provide simulations that bring new insights into the cell-free massive MIMO implementation.
Transformer models have achieved state-of-the-art results in a wide range of NLP tasks including summarization. Training and inference using large transformer models can be computationally expensive. Previous work has focused on one important bottleneck, the quadratic self-attention mechanism in the encoder. Modified encoder architectures such as LED or LoBART use local attention patterns to address this problem for summarization. In contrast, this work focuses on the transformer's encoder-decoder attention mechanism. The cost of this attention becomes more significant in inference or training approaches that require model-generated histories. First, we examine the complexity of the encoder-decoder attention. We demonstrate empirically that there is a sparse sentence structure in document summarization that can be exploited by constraining the attention mechanism to a subset of input sentences, whilst maintaining system performance. Second, we propose a modified architecture that selects the subset of sentences to constrain the encoder-decoder attention. Experiments are carried out on abstractive summarization tasks, including CNN/DailyMail, XSum, Spotify Podcast, and arXiv.
Reconfigurable intelligent surfaces (RISs) have attracted great attention as a potential beyond 5G technology. These surfaces consist of many passive elements of metamaterials whose impedance can be controllable to change the phase, amplitude, or other characteristics of wireless signals impinging on them. Channel estimation is a critical task when it comes to the control of a large RIS when having a channel with a large number of multipath components. In this paper, we propose a novel channel estimation scheme that exploits spatial correlation characteristics at both the massive multiple-input multiple-output (MIMO) base station and the planar RISs, and other statistical characteristics of multi-specular fading in a mobile environment. Moreover, a novel heuristic for phase-shift selection at the RISs is developed, inspired by signal processing methods that are effective in conventional massive MIMO. Simulation results demonstrate that the proposed uplink RIS-aided framework improves the spectral efficiency of the cell-edge mobile users substantially in comparison to a conventional single-cell massive MIMO system.
Efficient sampling and remote estimation are critical for a plethora of wireless-empowered applications in the Internet of Things and cyber-physical systems. Motivated by such applications, this work proposes decentralized policies for the real-time monitoring and estimation of autoregressive processes over random access channels. Two classes of policies are investigated: (i) oblivious schemes in which sampling and transmission policies are independent of the processes that are monitored, and (ii) non-oblivious schemes in which transmitters causally observe their corresponding processes for decision making. In the class of oblivious policies, we show that minimizing the expected time-average estimation error is equivalent to minimizing the expected age of information. Consequently, we prove lower and upper bounds on the minimum achievable estimation error in this class. Next, we consider non-oblivious policies and design a threshold policy, called error-based thinning, in which each source node becomes active if its instantaneous error has crossed a fixed threshold (which we optimize). Active nodes then transmit stochastically following a slotted ALOHA policy. A closed-form, approximately optimal, solution is found for the threshold as well as the resulting estimation error. It is shown that non-oblivious policies offer a multiplicative gain close to $3$ compared to oblivious policies. Moreover, it is shown that oblivious policies that use the age of information for decision making improve the state-of-the-art at least by the multiplicative factor $2$. The performance of all discussed policies is compared using simulations. The numerical comparison shows that the performance of the proposed decentralized policy is very close to that of centralized greedy scheduling.
This paper presents LuMaMi28, a real-time 28 GHz massive multiple-input multiple-output (MIMO) testbed. In this testbed, the base station has 16 transceiver chains with a fully-digital beamforming architecture (with different pre-coding algorithms) and simultaneously supports multiple user equipments (UEs) with spatial multiplexing. The UEs are equipped with a beam-switchable antenna array for real-time antenna selection where the one with the highest channel magnitude, out of four pre-defined beams, is selected. For the beam-switchable antenna array, we consider two kinds of UE antennas, with different beam-width and different peak-gain. Based on this testbed, we provide measurement results for millimeter-wave (mmWave) massive MIMO performance in different real-life scenarios with static and mobile UEs. We explore the potential benefit of the mmWave massive MIMO systems with antenna selection based on measured channel data, and discuss the performance results through real-time measurements.
This paper considers a cell-free massive multiple-input multiple-output (MIMO) system that consists of a large number of geographically distributed access points (APs) serving multiple users via coherent joint transmission. The downlink performance of the system is evaluated, with maximum ratio and regularized zero-forcing precoding, under two optimization objectives for power allocation: sum spectral efficiency (SE) maximization and proportional fairness. We present iterative centralized algorithms for solving these problems. Aiming at a less computationally complex and also distributed scalable solution, we train a deep neural network (DNN) to approximate the same network-wide power allocation. Instead of training our DNN to mimic the actual optimization procedure, we use a heuristic power allocation, based on large-scale fading (LSF) parameters, as the pre-processed input to the DNN. We train the DNN to refine the heuristic scheme, thereby providing higher SE, using only local information at each AP. Another distributed DNN that exploits side information assumed to be available at the central processing unit is designed for improved performance. Further, we develop a clustered DNN model where the LSF parameters of a small number of APs, forming a cluster within a relatively large network, are used to jointly approximate the power coefficients of the cluster.
In this paper, we present the delay-constrained performance analysis of a multi-antenna-assisted multiuser non-orthogonal multiple access (NOMA) based spectrum sharing system over Rayleigh fading channels. We derive analytical expressions for the sum effective rate (ER) for the downlink NOMA system under a peak interference constraint. In particular, we show the effect of the availability of different levels of channel state information (instantaneous and statistical) on the system performance. We also show the effect of different parameters of interest, including the peak tolerable interference power, the delay exponent, the number of antennas and the number of users, on the sum ER of the system under consideration. An excellent agreement between simulation and theoretical results confirms the accuracy of the analysis.
Millimeter-wave (mmW)/Terahertz (THz) wideband communication employing a large-scale antenna array is a promising technique of the sixth-generation (6G) wireless network for realizing massive machine-type communications (mMTC). To reduce the access latency and the signaling overhead, we design a grant-free random access scheme based on joint active device detection and channel estimation (JADCE) for mmW/THz wideband massive access. In particular, by exploiting the simultaneously sparse and low-rank structure of mmW/THz channels with spreads in the delay-angular domain, we propose two multi-rank aware JADCE algorithms via applying the quotient geometry of product of complex rank-$L$ matrices with the number of clusters $L$. It is proved that the proposed algorithms require a smaller number of measurements than the currently known bounds on measurements of conventional simultaneously sparse and low-rank recovery algorithms. Statistical analysis also shows that the proposed algorithms can linearly converge to the ground truth with low computational complexity. Finally, extensive simulation results confirm the superiority of the proposed algorithms in terms of the accuracy of both activity detection and channel estimation.
Training datasets for machine learning often have some form of missingness. For example, to learn a model for deciding whom to give a loan, the available training data includes individuals who were given a loan in the past, but not those who were not. This missingness, if ignored, nullifies any fairness guarantee of the training procedure when the model is deployed. Using causal graphs, we characterize the missingness mechanisms in different real-world scenarios. We show conditions under which various distributions, used in popular fairness algorithms, can or can not be recovered from the training data. Our theoretical results imply that many of these algorithms can not guarantee fairness in practice. Modeling missingness also helps to identify correct design principles for fair algorithms. For example, in multi-stage settings where decisions are made in multiple screening rounds, we use our framework to derive the minimal distributions required to design a fair algorithm. Our proposed algorithm decentralizes the decision-making process and still achieves similar performance to the optimal algorithm that requires centralization and non-recoverable distributions.
Neural waveform models such as the WaveNet are used in many recent text-to-speech systems, but the original WaveNet is quite slow in waveform generation because of its autoregressive (AR) structure. Although faster non-AR models were recently reported, they may be prohibitively complicated due to the use of a distilling training method and the blend of other disparate training criteria. This study proposes a non-AR neural source-filter waveform model that can be directly trained using spectrum-based training criteria and the stochastic gradient descent method. Given the input acoustic features, the proposed model first uses a source module to generate a sine-based excitation signal and then uses a filter module to transform the excitation signal into the output speech waveform. Our experiments demonstrated that the proposed model generated waveforms at least 100 times faster than the AR WaveNet and the quality of its synthetic speech is close to that of speech generated by the AR WaveNet. Ablation test results showed that both the sine-wave excitation signal and the spectrum-based training criteria were essential to the performance of the proposed model.