亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Speeding has been acknowledged as a critical determinant in increasing the risk of crashes and their resulting injury severities. This paper demonstrates that severe speeding-related crashes within the state of Pennsylvania have a spatial clustering trend, where four crash datasets are extracted from four hotspot districts. Two log-likelihood ratio (LR) tests were conducted to determine whether speeding-related crashes classified by hotspot districts should be modeled separately. The results suggest that separate modeling is necessary. To capture the unobserved heterogeneity, four correlated random parameter order models with heterogeneity in means are employed to explore the factors contributing to crash severity involving at least one vehicle speeding. Overall, the findings exhibit that some indicators are observed to be spatial instability, including hit pedestrian crashes, head-on crashes, speed limits, work zones, light conditions (dark), rural areas, older drivers, running stop signs, and running red lights. Moreover, drunk driving, exceeding the speed limit, and being unbelted present relative spatial stability in four district models. This paper provides insights into preventing speeding-related crashes and potentially facilitating the development of corresponding crash injury mitigation policies.

相關內容

The random forest (RF) algorithm has become a very popular prediction method for its great flexibility and promising accuracy. In RF, it is conventional to put equal weights on all the base learners (trees) to aggregate their predictions. However, the predictive performances of different trees within the forest can be very different due to the randomization of the embedded bootstrap sampling and feature selection. In this paper, we focus on RF for regression and propose two optimal weighting algorithms, namely the 1 Step Optimal Weighted RF (1step-WRF$_\mathrm{opt}$) and 2 Steps Optimal Weighted RF (2steps-WRF$_\mathrm{opt}$), that combine the base learners through the weights determined by weight choice criteria. Under some regularity conditions, we show that these algorithms are asymptotically optimal in the sense that the resulting squared loss and risk are asymptotically identical to those of the infeasible but best possible model averaging estimator. Numerical studies conducted on real-world data sets indicate that these algorithms outperform the equal-weight forest and two other weighted RFs proposed in existing literature in most cases.

Genetic association studies for brain connectivity phenotypes have gained prominence due to advances in non-invasive imaging techniques and quantitative genetics. Brain connectivity traits, characterized by network configurations and unique biological structures, present distinct challenges compared to other quantitative phenotypes. Furthermore, the presence of sample relatedness in most imaging genetics studies limits the feasibility of adopting existing network-response modeling. In this paper, we fill this gap by proposing a Bayesian network-response mixed-effect model that considers a network-variate phenotype and incorporates population structures including pedigrees and unknown sample relatedness. To accommodate the inherent topological architecture associated with the genetic contributions to the phenotype, we model the effect components via a set of effect subnetworks and impose an inter-network sparsity and intra-network shrinkage to dissect the phenotypic network configurations affected by the risk genetic variant. To facilitate uncertainty quantification of signaling components from both genotype and phenotype sides, we develop a Markov chain Monte Carlo (MCMC) algorithm for posterior inference. We evaluate the performance and robustness of our model through extensive simulations. By further applying the method to study the genetic bases for brain structural connectivity using data from the Human Connectome Project with excessive family structures, we obtain plausible and interpretable results. Beyond brain connectivity genetic studies, our proposed model also provides a general linear mixed-effect regression framework for network-variate outcomes.

Recent algorithms of time-series anomaly detection have been evaluated by applying a Point Adjustment (PA) protocol. However, the PA protocol has a problem of overestimating the performance of the detection algorithms because it only depends on the number of detected abnormal segments and their size. We propose a novel evaluation protocol called the Point-Adjusted protocol with decay function (PAdf) to evaluate the time-series anomaly detection algorithm by reflecting the following ideal requirements: detect anomalies quickly and accurately without false alarms. This paper theoretically and experimentally shows that the PAdf protocol solves the over- and under-estimation problems of existing protocols such as PA and PA\%K. By conducting re-evaluations of SOTA models in benchmark datasets, we show that the PA protocol only focuses on finding many anomalous segments, whereas the score of the PAdf protocol considers not only finding many segments but also detecting anomalies quickly without delay.

For certain materials science scenarios arising in rubber technology, one-dimensional moving boundary problems (MBPs) with kinetic boundary conditions are capable of unveiling the large-time behavior of the diffusants penetration front, giving a direct estimate on the service life of the material. In this paper, we propose a random walk algorithm able to lead to good numerical approximations of both the concentration profile and the location of the sharp front. Essentially, the proposed scheme decouples the target evolution system in two steps: (i) the ordinary differential equation corresponding to the evaluation of the speed of the moving boundary is solved via an explicit Euler method, and (ii) the associated diffusion problem is solved by a random walk method. To verify the correctness of our random walk algorithm we compare the resulting approximations to results based on a finite element approach with a controlled convergence rate. Our numerical experiments recover well penetration depth measurements of an experimental setup targeting dense rubbers.

Dynamical mean-field theory is a powerful physics tool used to analyze the typical behavior of neural networks, where neurons can be recurrently connected, or multiple layers of neurons can be stacked. However, it is not easy for beginners to access the essence of this tool and the underlying physics. Here, we give a pedagogical introduction of this method in a particular example of generic random neural networks, where neurons are randomly and fully connected by correlated synapses and therefore the network exhibits rich emergent collective dynamics. We also review related past and recent important works applying this tool. In addition, a physically transparent and alternative method, namely the dynamical cavity method, is also introduced to derive exactly the same results. The numerical implementation of solving the integro-differential mean-field equations is also detailed, with an illustration of exploring the fluctuation dissipation theorem.

Integrating evolutionary partial differential equations (PDEs) is an essential ingredient for studying the dynamics of the solutions. Indeed, simulations are at the core of scientific computing, but their mathematical reliability is often difficult to quantify, especially when one is interested in the output of a given simulation, rather than in the asymptotic regime where the discretization parameter tends to zero. In this paper we present a computer-assisted proof methodology to perform rigorous time integration for scalar semilinear parabolic PDEs with periodic boundary conditions. We formulate an equivalent zero-finding problem based on a variations of constants formula in Fourier space. Using Chebyshev interpolation and domain decomposition, we then finish the proof with a Newton--Kantorovich type argument. The final output of this procedure is a proof of existence of an orbit, together with guaranteed error bounds between this orbit and a numerically computed approximation. We illustrate the versatility of the approach with results for the Fisher equation, the Swift--Hohenberg equation, the Ohta--Kawasaki equation and the Kuramoto--Sivashinsky equation. We expect that this rigorous integrator can form the basis for studying boundary value problems for connecting orbits in partial differential equations.

Modern biomedical datasets are increasingly high dimensional and exhibit complex correlation structures. Generalized Linear Mixed Models (GLMMs) have long been employed to account for such dependencies. However, proper specification of the fixed and random effects in GLMMs is increasingly difficult in high dimensions, and computational complexity grows with increasing dimension of the random effects. We present a novel reformulation of the GLMM using a factor model decomposition of the random effects, enabling scalable computation of GLMMs in high dimensions by reducing the latent space from a large number of random effects to a smaller set of latent factors. We also extend our prior work to estimate model parameters using a modified Monte Carlo Expectation Conditional Minimization algorithm, allowing us to perform variable selection on both the fixed and random effects simultaneously. We show through simulation that through this factor model decomposition, our method can fit high dimensional penalized GLMMs faster than comparable methods and more easily scale to larger dimensions not previously seen in existing approaches.

We propose an online learning algorithm for a class of machine learning models under a separable stochastic approximation framework. The essence of our idea lies in the observation that certain parameters in the models are easier to optimize than others. In this paper, we focus on models where some parameters have a linear nature, which is common in machine learning. In one routine of the proposed algorithm, the linear parameters are updated by the recursive least squares (RLS) algorithm, which is equivalent to a stochastic Newton method; then, based on the updated linear parameters, the nonlinear parameters are updated by the stochastic gradient method (SGD). The proposed algorithm can be understood as a stochastic approximation version of block coordinate gradient descent approach in which one part of the parameters is updated by a second-order SGD method while the other part is updated by a first-order SGD. Global convergence of the proposed online algorithm for non-convex cases is established in terms of the expected violation of a first-order optimality condition. Numerical experiments have shown that the proposed method accelerates convergence significantly and produces more robust training and test performance when compared to other popular learning algorithms. Moreover, our algorithm is less sensitive to the learning rate and outperforms the recently proposed slimTrain algorithm. The code has been uploaded to GitHub for validation.

Federated learning (FL) has been proposed to protect data privacy and virtually assemble the isolated data silos by cooperatively training models among organizations without breaching privacy and security. However, FL faces heterogeneity from various aspects, including data space, statistical, and system heterogeneity. For example, collaborative organizations without conflict of interest often come from different areas and have heterogeneous data from different feature spaces. Participants may also want to train heterogeneous personalized local models due to non-IID and imbalanced data distribution and various resource-constrained devices. Therefore, heterogeneous FL is proposed to address the problem of heterogeneity in FL. In this survey, we comprehensively investigate the domain of heterogeneous FL in terms of data space, statistical, system, and model heterogeneity. We first give an overview of FL, including its definition and categorization. Then, We propose a precise taxonomy of heterogeneous FL settings for each type of heterogeneity according to the problem setting and learning objective. We also investigate the transfer learning methodologies to tackle the heterogeneity in FL. We further present the applications of heterogeneous FL. Finally, we highlight the challenges and opportunities and envision promising future research directions toward new framework design and trustworthy approaches.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司