We present a high-order boundary integral equation (BIE) method for the frequency-domain acoustic scattering of a point source by a singly-periodic, infinite, corrugated boundary. We apply it to the accurate numerical study of acoustic radiation in the neighborhood of a sound-hard two-dimensional staircase modeled after the El Castillo pyramid. Such staircases support trapped waves which travel along the surface and decay exponentially away from it. We use the array scanning method (Floquet--Bloch transform) to recover the scattered field as an integral over the family of quasiperiodic solutions parameterized by their on-surface wavenumber. Each such BIE solution requires the quasiperiodic Green's function, which we evaluate using an efficient integral representation of lattice sum coefficients. We avoid the singularities and branch cuts present in the array scanning integral by complex contour deformation. For each frequency, this enables a solution accurate to around 10 digits in a couple of seconds. We propose a residue method to extract the limiting powers carried by trapped modes far from the source. Finally, by computing the trapped mode dispersion relation, we use a simple ray model to explain an observed acoustic "raindrop" effect (chirp-like time-domain response).
Exact travelling wave solutions to the two-dimensional stochastic Allen-Cahn equation with multiplicative noise are obtained through the hyperbolic tangent (tanh) method. This technique limits the solutions to travelling wave profiles by representing them with a finite tanh power series. This study focuses on how multiplicative noise affects the dynamics of these travelling waves, in particular, occurring of wave propagation failure due to high levels of noise.
We study the stability and sensitivity of an absorbing layer for the Boltzmann equation by examining the Bhatnagar-Gross-Krook (BGK) approximation and using the perfectly matched layer (PML) technique. To ensure stability, we discard some parameters in the model and calculate the total sensitivity indices of the remaining parameters using the ANOVA expansion of multivariate functions. We conduct extensive numerical experiments to study stability and compute the total sensitivity indices, which allow us to identify the essential parameters of the model.
Quadratization of polynomial and nonpolynomial systems of ordinary differential equations is advantageous in a variety of disciplines, such as systems theory, fluid mechanics, chemical reaction modeling and mathematical analysis. A quadratization reveals new variables and structures of a model, which may be easier to analyze, simulate, control, and provides a convenient parametrization for learning. This paper presents novel theory, algorithms and software capabilities for quadratization of non-autonomous ODEs. We provide existence results, depending on the regularity of the input function, for cases when a quadratic-bilinear system can be obtained through quadratization. We further develop existence results and an algorithm that generalizes the process of quadratization for systems with arbitrary dimension that retain the nonlinear structure when the dimension grows. For such systems, we provide dimension-agnostic quadratization. An example is semi-discretized PDEs, where the nonlinear terms remain symbolically identical when the discretization size increases. As an important aspect for practical adoption of this research, we extended the capabilities of the QBee software towards both non-autonomous systems of ODEs and ODEs with arbitrary dimension. We present several examples of ODEs that were previously reported in the literature, and where our new algorithms find quadratized ODE systems with lower dimension than the previously reported lifting transformations. We further highlight an important area of quadratization: reduced-order model learning. This area can benefit significantly from working in the optimal lifting variables, where quadratic models provide a direct parametrization of the model that also avoids additional hyperreduction for the nonlinear terms. A solar wind example highlights these advantages.
We consider the low-rank alternating directions implicit (ADI) iteration for approximately solving large-scale algebraic Sylvester equations. Inside every iteration step of this iterative process a pair of linear systems of equations has to be solved. We investigate the situation when those inner linear systems are solved inexactly by an iterative methods such as, for example, preconditioned Krylov subspace methods. The main contribution of this work are thresholds for the required accuracies regarding the inner linear systems which dictate when the employed inner Krylov subspace methods can be safely terminated. The goal is to save computational effort by solving the inner linear system as inaccurate as possible without endangering the functionality of the low-rank Sylvester-ADI method. Ideally, the inexact ADI method mimics the convergence behaviour of the more expensive exact ADI method, where the linear systems are solved directly. Alongside the theoretical results, also strategies for an actual practical implementation of the stopping criteria are developed. Numerical experiments confirm the effectiveness of the proposed strategies.
Species transport models typically combine partial differential equations (PDEs) with relations from hindered transport theory to quantify electromigrative, convective, and diffusive transport through complex nanoporous systems; however, these formulations are frequently substantial simplifications of the governing dynamics, leading to the poor generalization performance of PDE-based models. Given the growing interest in deep learning methods for the physical sciences, we develop a machine learning-based approach to characterize ion transport across nanoporous membranes. Our proposed framework centers around attention-enhanced neural differential equations that incorporate electroneutrality-based inductive biases to improve generalization performance relative to conventional PDE-based methods. In addition, we study the role of the attention mechanism in illuminating physically-meaningful ion-pairing relationships across diverse mixture compositions. Further, we investigate the importance of pre-training on simulated data from PDE-based models, as well as the performance benefits from hard vs. soft inductive biases. Our results indicate that physics-informed deep learning solutions can outperform their classical PDE-based counterparts and provide promising avenues for modelling complex transport phenomena across diverse applications.
The high-frequency Helmholtz equation on the entire space is truncated into a bounded domain using the perfectly matched layer (PML) technique and subsequently, discretized by the higher-order finite element method (FEM) and the continuous interior penalty finite element method (CIP-FEM). By formulating an elliptic problem involving a linear combination of a finite number of eigenfunctions related to the PML differential operator, a wave-number-explicit decomposition lemma is proved for the PML problem, which implies that the PML solution can be decomposed into a non-oscillating elliptic part and an oscillating but analytic part. The preasymptotic error estimates in the energy norm for both the $p$-th order CIP-FEM and FEM are proved to be $C_1(kh)^p + C_2k(kh)^{2p} +C_3 E^{\rm PML}$ under the mesh condition that $k^{2p+1}h^{2p}$ is sufficiently small, where $k$ is the wave number, $h$ is the mesh size, and $E^{\rm PML}$ is the PML truncation error which is exponentially small. In particular, the dependences of coefficients $C_j~(j=1,2)$ on the source $f$ are improved. Numerical experiments are presented to validate the theoretical findings, illustrating that the higher-order CIP-FEM can greatly reduce the pollution errors.
We present an efficient matrix-free geometric multigrid method for the elastic Helmholtz equation, and a suitable discretization. Many discretization methods had been considered in the literature for the Helmholtz equations, as well as many solvers and preconditioners, some of which are adapted for the elastic version of the equation. However, there is very little work considering the reciprocity of discretization and a solver. In this work, we aim to bridge this gap. By choosing an appropriate stencil for re-discretization of the equation on the coarse grid, we develop a multigrid method that can be easily implemented as matrix-free, relying on stencils rather than sparse matrices. This is crucial for efficient implementation on modern hardware. Using two-grid local Fourier analysis, we validate the compatibility of our discretization with our solver, and tune a choice of weights for the stencil for which the convergence rate of the multigrid cycle is optimal. It results in a scalable multigrid preconditioner that can tackle large real-world 3D scenarios.
We propose a method for computing the Lyapunov exponents of renewal equations (delay equations of Volterra type) and of coupled systems of renewal and delay differential equations. The method consists in the reformulation of the delay equation as an abstract differential equation, the reduction of the latter to a system of ordinary differential equations via pseudospectral collocation, and the application of the standard discrete QR method. The effectiveness of the method is shown experimentally and a MATLAB implementation is provided.
Of all the possible projection methods for solving large-scale Lyapunov matrix equations, Galerkin approaches remain much more popular than Petrov-Galerkin ones. This is mainly due to the different nature of the projected problems stemming from these two families of methods. While a Galerkin approach leads to the solution of a low-dimensional matrix equation per iteration, a matrix least-squares problem needs to be solved per iteration in a Petrov-Galerkin setting. The significant computational cost of these least-squares problems has steered researchers towards Galerkin methods in spite of the appealing minimization properties of Petrov-Galerkin schemes. In this paper we introduce a framework that allows for modifying the Galerkin approach by low-rank, additive corrections to the projected matrix equation problem with the two-fold goal of attaining monotonic convergence rates similar to those of Petrov-Galerkin schemes while maintaining essentially the same computational cost of the original Galerkin method. We analyze the well-posedness of our framework and determine possible scenarios where we expect the residual norm attained by two low-rank-modified variants to behave similarly to the one computed by a Petrov-Galerkin technique. A panel of diverse numerical examples shows the behavior and potential of our new approach.
We develop a novel discontinuous Galerkin method for solving the rotating thermal shallow water equations (TRSW) on a curvilinear mesh. Our method is provably entropy stable, conserves mass, buoyancy and vorticity, while also semi-discretely conserving energy. This is achieved by using novel numerical fluxes and splitting the pressure and convection operators. We implement our method on a cubed sphere mesh and numerically verify our theoretical results. Our experiments demonstrate the robustness of the method for a regime of well developed turbulence, where it can be run stably without any dissipation. The entropy stable fluxes are sufficient to control the grid scale noise generated by geostrophic turbulence, eliminating the need for artificial stabilization.