亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a chance-constrained multi-robot motion planning problem in the presence of Gaussian motion and sensor noise. Our proposed algorithm, CC-K-CBS, leverages the scalability of kinodynamic conflict-based search (K-CBS) in conjunction with the efficiency of the Gaussian belief trees used in the Belief-A framework, and inherits the completeness guarantees of Belief-A's low-level sampling-based planner. We also develop three different methods for robot-robot probabilistic collision checking, which trade off computation with accuracy. Our algorithm generates motion plans driving each robot from its initial state to its goal while accounting for the evolution of its uncertainty with chance-constrained safety guarantees. Benchmarks compare computation time to conservatism of the collision checkers, in addition to characterizing the performance of the planner as a whole. Results show that CC-K-CBS can scale up to 30 robots.

相關內容

Self-driving vehicles (SDVs) are becoming reality but still suffer from "long-tail" challenges during natural driving: the SDVs will continually encounter rare, safety-critical cases that may not be included in the dataset they were trained. Some safety-assurance planners solve this problem by being conservative in all possible cases, which may significantly affect driving mobility. To this end, this work proposes a method to automatically adjust the conservative level according to each case's "long-tail" rate, named dynamically conservative planner (DCP). We first define the "long-tail" rate as an SDV's confidence to pass a driving case. The rate indicates the probability of safe-critical events and is estimated using the statistics bootstrapped method with historical data. Then, a reinforcement learning-based planner is designed to contain candidate policies with different conservative levels. The final policy is optimized based on the estimated "long-tail" rate. In this way, the DCP is designed to automatically adjust to be more conservative in low-confidence "long-tail" cases while keeping efficient otherwise. The DCP is evaluated in the CARLA simulator using driving cases with "long-tail" distributed training data. The results show that the DCP can accurately estimate the "long-tail" rate to identify potential risks. Based on the rate, the DCP automatically avoids potential collisions in "long-tail" cases using conservative decisions while not affecting the average velocity in other typical cases. Thus, the DCP is safer and more efficient than the baselines with fixed conservative levels, e.g., an always conservative planner. This work provides a technique to guarantee SDV's performance in unexpected driving cases without resorting to a global conservative setting, which contributes to solving the "long-tail" problem practically.

In space-air-ground integrated networks (SAGIN), terminals face interference from various sources such as satellites and terrestrial transmitters. However, managing interference with traditional interference management schemes (IM) is challenging since different terminals have different channel state information (CSI). This paper introduces a UAV carrying an active RIS (UAV-RIS) to assist in the interference elimination process. Furthermore, a UAV-RIS-aided IM scheme is proposed, which takes into account the multiple types of CSIs present in SAGIN. In this scheme, the satellite, terrestrial transmitters, and UAV-RIS collaborate to design precoding matrices based on the specific type of CSI of each node. Additionally, the DoF gain obtained by the proposed IM scheme is thoroughly discussed for SAGIN configurations with different numbers of users and transceiver antennas. Simulation results demonstrate that the proposed IM scheme outperforms existing IM schemes without UAV-RIS for the same type of CSI. The results also showcase the capacity improvement of the network when the proposed IM scheme is adopted under different types of CSI.

The rapidly growing traffic demands in fiber-optical networks require flexibility and accuracy in configuring lightpaths, for which fast and accurate quality of transmission (QoT) estimation is of pivotal importance. This paper introduces a machine learning (ML)-based QoT estimation approach that meets these requirements. The proposed gradient-boosting ML model uses precomputed per-channel self-channel-interference values as representative and condensed features to estimate non-linear interference in a flexible-grid network. With an enhanced Gaussian noise (GN) model simulation as the baseline, the ML model achieves a mean absolute signal-to-noise ratio error of approximately 0.1 dB, which is an improvement over the GN model. For three different network topologies and network planning approaches of varying complexities, a multi-period network planning study is performed in which ML and GN are compared as path computation elements (PCEs). The results show that the ML PCE is capable of matching or slightly improving the performance of the GN PCE on all topologies while reducing significantly the computation time of network planning by up to 70%.

We consider an atomic congestion game in which each player $i$ either participates in the game with an exogenous and known probability $p_{i}\in(0,1]$, independently of everybody else, or stays out and incurs no cost. We compute the parameterized price of anarchy to characterize the impact of demand uncertainty on the efficiency of selfish behavior, considering two different notions of a social planner. A prophet planner knows the realization of the random participation in the game; the ordinary planner does not. As a consequence, a prophet planner can compute an adaptive social optimum that selects different solutions depending on the players that turn out to be active, whereas an ordinary planner faces the same uncertainty as the players and can only compute social optima with respect to the player participation distribution. For both planners, we derive the precise price of anarchy, which arises from an optimization problem parameterized by the maximum participation probability $q=\max_{i} p_{i}$. For the case of affine costs, we provide an analytic expression for the ordinary and prophet price of anarchy, parameterized as a function of $q$.

A key challenge in off-road navigation is that even visually similar terrains or ones from the same semantic class may have substantially different traction properties. Existing work typically assumes no wheel slip or uses the expected traction for motion planning, where the predicted trajectories provide a poor indication of the actual performance if the terrain traction has high uncertainty. In contrast, this work models traversability as the empirical distribution of traction parameters in unicycle dynamics, which can be learned by a neural network in a self-supervised fashion. The probabilistic traction model leads to two risk-aware cost formulations that account for the worst-case expected cost and traction. To help the learned model generalize to unseen environment, terrains with features that lead to unreliable predictions are detected via a density estimator fit to the trained network's latent space and avoided via auxiliary penalties during planning. Simulation results demonstrate that the proposed approach outperforms existing work that assumes no slip or uses the expected traction in both navigation success rate and completion time. Furthermore, avoiding terrains with low density-based confidence score achieves up to 30% improvement in success rate when the learned traction model is used in a novel environment.

Real-time perception and motion planning are two crucial tasks for autonomous driving. While there are many research works focused on improving the performance of perception and motion planning individually, it is still not clear how a perception error may adversely impact the motion planning results. In this work, we propose a joint simulation framework with LiDAR-based perception and motion planning for real-time automated driving. Taking the sensor input from the CARLA simulator with additive noise, a LiDAR perception system is designed to detect and track all surrounding vehicles and to provide precise orientation and velocity information. Next, we introduce a new collision bound representation that relaxes the communication cost between the perception module and the motion planner. A novel collision checking algorithm is implemented using line intersection checking that is more efficient for long distance range in comparing to the traditional method of occupancy grid. We evaluate the joint simulation framework in CARLA for urban driving scenarios. Experiments show that our proposed automated driving system can execute at 25 Hz, which meets the real-time requirement. The LiDAR perception system has high accuracy within 20 meters when evaluated with the ground truth. The motion planning results in consistent safe distance keeping when tested in CARLA urban driving scenarios.

This report presents a framework called Segment And Track Anything (SAMTrack) that allows users to precisely and effectively segment and track any object in a video. Additionally, SAM-Track employs multimodal interaction methods that enable users to select multiple objects in videos for tracking, corresponding to their specific requirements. These interaction methods comprise click, stroke, and text, each possessing unique benefits and capable of being employed in combination. As a result, SAM-Track can be used across an array of fields, ranging from drone technology, autonomous driving, medical imaging, augmented reality, to biological analysis. SAM-Track amalgamates Segment Anything Model (SAM), an interactive key-frame segmentation model, with our proposed AOT-based tracking model (DeAOT), which secured 1st place in four tracks of the VOT 2022 challenge, to facilitate object tracking in video. In addition, SAM-Track incorporates Grounding-DINO, which enables the framework to support text-based interaction. We have demonstrated the remarkable capabilities of SAM-Track on DAVIS-2016 Val (92.0%), DAVIS-2017 Test (79.2%)and its practicability in diverse applications. The project page is available at: //github.com/z-x-yang/Segment-and-Track-Anything.

The Laplace-Beltrami problem on closed surfaces embedded in three dimensions arises in many areas of physics, including molecular dynamics (surface diffusion), electromagnetics (harmonic vector fields), and fluid dynamics (vesicle deformation). Using classical potential theory, the Laplace-Beltrami operator can be pre-/post-conditioned with an integral operator whose kernel is translation invariant, resulting in well-conditioned Fredholm integral equations of the second-kind. These equations have the standard~$1/r$ kernel from potential theory, and therefore the equations can be solved rapidly and accurately using a combination of fast multipole methods (FMMs) and high-order quadrature corrections. In this work we detail such a scheme, presenting two alternative integral formulations of the Laplace-Beltrami problem, each of whose solution can be obtained via FMM acceleration. We then present several applications of the solvers, focusing on the computation of what are known as harmonic vector fields, relevant for many applications in electromagnetics. A battery of numerical results are presented for each application, detailing the performance of the solver in various geometries.

Spinal fusion surgery requires highly accurate implantation of pedicle screw implants, which must be conducted in critical proximity to vital structures with a limited view of anatomy. Robotic surgery systems have been proposed to improve placement accuracy, however, state-of-the-art systems suffer from the limitations of open-loop approaches, as they follow traditional concepts of preoperative planning and intraoperative registration, without real-time recalculation of the surgical plan. In this paper, we propose an intraoperative planning approach for robotic spine surgery that leverages real-time observation for drill path planning based on Safe Deep Reinforcement Learning (DRL). The main contributions of our method are (1) the capability to guarantee safe actions by introducing an uncertainty-aware distance-based safety filter; and (2) the ability to compensate for incomplete intraoperative anatomical information, by encoding a-priori knowledge about anatomical structures with a network pre-trained on high-fidelity anatomical models. Planning quality was assessed by quantitative comparison with the gold standard (GS) drill planning. In experiments with 5 models derived from real magnetic resonance imaging (MRI) data, our approach was capable of achieving 90% bone penetration with respect to the GS while satisfying safety requirements, even under observation and motion uncertainty. To the best of our knowledge, our approach is the first safe DRL approach focusing on orthopedic surgeries.

We present an approach for safe motion planning under robot state and environment (obstacle and landmark location) uncertainties. To this end, we first develop an approach that accounts for the landmark uncertainties during robot localization. Existing planning approaches assume that the landmark locations are well known or are known with little uncertainty. However, this might not be true in practice. Noisy sensors and imperfect motions compound to the errors originating from the estimate of environment features. Moreover, possible occlusions and dynamic objects in the environment render imperfect landmark estimation. Consequently, not considering this uncertainty can wrongly localize the robot, leading to inefficient plans. Our approach thus incorporates the landmark uncertainty within the Bayes filter estimation framework. We also analyze the effect of considering this uncertainty and delineate the conditions under which it can be ignored. Second, we extend the state-of-the-art by computing an exact expression for the collision probability under Gaussian distributed robot motion, perception and obstacle location uncertainties. We formulate the collision probability process as a quadratic form in random variables. Under Gaussian distribution assumptions, an exact expression for collision probability is thus obtained which is computable in real-time. In contrast, existing approaches approximate the collision probability using upper-bounds that can lead to overly conservative estimate and thereby suboptimal plans. We demonstrate and evaluate our approach using a theoretical example and simulations. We also present a comparison of our approach to different state-of-the-art methods.

北京阿比特科技有限公司