亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mobile phones and apps have become a ubiquitous part of digital life. There is a large variety and volume of personal data sent to and used by mobile apps, leading to various privacy issues. Privacy regulations protect and promote the privacy of individuals by requiring mobile apps to provide a privacy policy that explains what personal information is gathered and how these apps process and safely keep this information. However, developers often do not have sufficient legal knowledge to create such privacy policies. Online Automated Privacy Policy Generators (APPGs) can create privacy policies, but their quality and other characteristics can vary. In this paper, we conduct the first large-scale, comprehensive empirical study of APPGs for mobile apps. Specifically, we collected and analyzed 46,472 Android app privacy policies from the Google Play Store and systematically evaluated 10 APPGs on multiple dimensions. We reported analyses on how widely APPGs are used and whether policies are consistent with app permissions. We found that nearly 20.1% of privacy policies could be generated by APPGs and summarized the potential and limitations of APPGs.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Mobile privacy and security can be a collaborative process where individuals seek advice and help from their trusted communities. To support such collective privacy and security management, we developed a mobile app for Community Oversight of Privacy and Security ("CO-oPS") that allows community members to review one another's apps installed and permissions granted to provide feedback. We conducted a four-week-long field study with 22 communities (101 participants) of friends, families, or co-workers who installed the CO-oPS app on their phones. Measures of transparency, trust, and awareness of one another's mobile privacy and security behaviors, along with individual and community participation in mobile privacy and security co-management, increased from pre- to post-study. Interview findings confirmed that the app features supported collective considerations of apps and permissions. However, participants expressed a range of concerns regarding having community members with different levels of technical expertise and knowledge regarding mobile privacy and security that can impact motivation to participate and perform oversight. Our study demonstrates the potential and challenges of community oversight mechanisms to support communities to co-manage mobile privacy and security.

Complex Systems were identified and studied in different fields, such as physics, biology, and economics. These systems exhibit exciting properties such as self-organization, robust order, and emergence. In recent years, software systems displaying behaviors associated with Complex Systems are starting to appear, and these behaviors are showing previously unknown potential (e.g., GPT-based applications). Yet, there is no commonly shared definition of a Complex Software System that can serve as a key reference for academia to support research in the area. In this paper, we adopt the theory-to-research strategy to extract properties of Complex Systems from research in other fields, mapping them to software systems to create a formal definition of a Complex Software System. We support the evolution of the properties through future validation, and we provide examples of the application of the definition. Overall, the definition will allow for a more precise, consistent, and rigorous frame of reference for conducting scientific research on software systems.

Humankind is entering a novel creative era in which anybody can synthesize digital information using generative artificial intelligence (AI). Text-to-image generation, in particular, has become vastly popular and millions of practitioners produce AI-generated images and AI art online. This chapter first gives an overview of the key developments that enabled a healthy co-creative online ecosystem around text-to-image generation to rapidly emerge, followed by a high-level description of key elements in this ecosystem. A particular focus is placed on prompt engineering, a creative practice that has been embraced by the AI art community. It is then argued that the emerging co-creative ecosystem constitutes an intelligent system on its own - a system that both supports human creativity, but also potentially entraps future generations and limits future development efforts in AI. The chapter discusses the potential risks and dangers of cultivating this co-creative ecosystem, such as the bias inherent in today's training data, potential quality degradation in future image generation systems due to synthetic data becoming common place, and the potential long-term effects of text-to-image generation on people's imagination, ambitions, and development.

Software applications have become an omnipresent part of modern society. The consequent privacy policies of these applications play a significant role in informing customers how their personal information is collected, stored, and used. However, customers rarely read and often fail to understand privacy policies because of the ``Privacy Policy Reading Phobia'' (PPRP). To tackle this emerging challenge, we propose the first framework that can automatically generate privacy nutrition labels from privacy policies. Based on our ground truth applications about the Data Safety Report from the Google Play app store, our framework achieves a 0.75 F1-score on generating first-party data collection practices and an average of 0.93 F1-score on general security practices. We also analyse the inconsistencies between ground truth and curated privacy nutrition labels on the market, and our framework can detect 90.1% under-claim issues. Our framework demonstrates decent generalizability across different privacy nutrition label formats, such as Google's Data Safety Report and Apple's App Privacy Details.

Machine learning (ML) models are costly to train as they can require a significant amount of data, computational resources and technical expertise. Thus, they constitute valuable intellectual property that needs protection from adversaries wanting to steal them. Ownership verification techniques allow the victims of model stealing attacks to demonstrate that a suspect model was in fact stolen from theirs. Although a number of ownership verification techniques based on watermarking or fingerprinting have been proposed, most of them fall short either in terms of security guarantees (well-equipped adversaries can evade verification) or computational cost. A fingerprinting technique, Dataset Inference (DI), has been shown to offer better robustness and efficiency than prior methods. The authors of DI provided a correctness proof for linear (suspect) models. However, in a subspace of the same setting, we prove that DI suffers from high false positives (FPs) -- it can incorrectly identify an independent model trained with non-overlapping data from the same distribution as stolen. We further prove that DI also triggers FPs in realistic, non-linear suspect models. We then confirm empirically that DI in the black-box setting leads to FPs, with high confidence. Second, we show that DI also suffers from false negatives (FNs) -- an adversary can fool DI (at the cost of incurring some accuracy loss) by regularising a stolen model's decision boundaries using adversarial training, thereby leading to an FN. To this end, we demonstrate that black-box DI fails to identify a model adversarially trained from a stolen dataset -- the setting where DI is the hardest to evade. Finally, we discuss the implications of our findings, the viability of fingerprinting-based ownership verification in general, and suggest directions for future work.

In recent years, online social networks have been the target of adversaries who seek to introduce discord into societies, to undermine democracies and to destabilize communities. Often the goal is not to favor a certain side of a conflict but to increase disagreement and polarization. To get a mathematical understanding of such attacks, researchers use opinion-formation models from sociology, such as the Friedkin--Johnsen model, and formally study how much discord the adversary can produce when altering the opinions for only a small set of users. In this line of work, it is commonly assumed that the adversary has full knowledge about the network topology and the opinions of all users. However, the latter assumption is often unrealistic in practice, where user opinions are not available or simply difficult to estimate accurately. To address this concern, we raise the following question: Can an attacker sow discord in a social network, even when only the network topology is known? We answer this question affirmatively. We present approximation algorithms for detecting a small set of users who are highly influential for the disagreement and polarization in the network. We show that when the adversary radicalizes these users and if the initial disagreement/polarization in the network is not very high, then our method gives a constant-factor approximation on the setting when the user opinions are known. To find the set of influential users, we provide a novel approximation algorithm for a variant of MaxCut in graphs with positive and negative edge weights. We experimentally evaluate our methods, which have access only to the network topology, and we find that they have similar performance as methods that have access to the network topology and all user opinions. We further present an NP-hardness proof, which was an open question by Chen and Racz [IEEE Trans. Netw. Sci. Eng., 2021].

Federated Learning (FL) enables multiple clients to collaboratively learn a machine learning model without exchanging their own local data. In this way, the server can exploit the computational power of all clients and train the model on a larger set of data samples among all clients. Although such a mechanism is proven to be effective in various fields, existing works generally assume that each client preserves sufficient data for training. In practice, however, certain clients may only contain a limited number of samples (i.e., few-shot samples). For example, the available photo data taken by a specific user with a new mobile device is relatively rare. In this scenario, existing FL efforts typically encounter a significant performance drop on these clients. Therefore, it is urgent to develop a few-shot model that can generalize to clients with limited data under the FL scenario. In this paper, we refer to this novel problem as \emph{federated few-shot learning}. Nevertheless, the problem remains challenging due to two major reasons: the global data variance among clients (i.e., the difference in data distributions among clients) and the local data insufficiency in each client (i.e., the lack of adequate local data for training). To overcome these two challenges, we propose a novel federated few-shot learning framework with two separately updated models and dedicated training strategies to reduce the adverse impact of global data variance and local data insufficiency. Extensive experiments on four prevalent datasets that cover news articles and images validate the effectiveness of our framework compared with the state-of-the-art baselines. Our code is provided\footnote{\href{//github.com/SongW-SW/F2L}{//github.com/SongW-SW/F2L}}.

Malicious server (MS) attacks have enabled the scaling of data stealing in federated learning to large batch sizes and secure aggregation, settings previously considered private. However, many concerns regarding client-side detectability of MS attacks were raised, questioning their practicality once they are publicly known. In this work, for the first time, we thoroughly study the problem of client-side detectability.We demonstrate that most prior MS attacks, which fundamentally rely on one of two key principles, are detectable by principled client-side checks. Further, we formulate desiderata for practical MS attacks and propose SEER, a novel attack framework that satisfies all desiderata, while stealing user data from gradients of realistic networks, even for large batch sizes (up to 512 in our experiments) and under secure aggregation. The key insight of SEER is the use of a secret decoder, which is jointly trained with the shared model. Our work represents a promising first step towards more principled treatment of MS attacks, paving the way for realistic data stealing that can compromise user privacy in real-world deployments.

Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

北京阿比特科技有限公司