Secure Aggregation (SA) is a key component of privacy-friendly federated learning applications, where the server learns the sum of many user-supplied gradients, while individual gradients are kept private. State-of-the-art SA protocols protect individual inputs with zero-sum random shares that are distributed across users, have a per-user overhead that is logarithmic in the number of users, and take more than 5 rounds of interaction. In this paper, we introduce LISA, an SA protocol that leverages a source of public randomness to minimize per-user overhead and the number of rounds. In particular, LISA requires only two rounds and has a communication overhead that is asymptotically equal to that of a non-private protocol -- one where inputs are provided to the server in the clear -- for most of the users. In a nutshell, LISA uses public randomness to select a subset of the users -- a committee -- that aid the server to recover the aggregated input. Users blind their individual contributions with randomness shared with each of the committee members; each committee member provides the server with an aggregate of the randomness shared with each user. Hence, as long as one committee member is honest, the server cannot learn individual inputs but only the sum of threshold-many inputs. We compare LISA with state-of-the-art SA protocols both theoretically and by means of simulations and present results of our experiments. We also integrate LISA in a Federated Learning pipeline and compare its performance with a non-private protocol.
The trend towards transitioning from monolithic applications to microservices has been widely embraced in modern distributed systems and applications. This shift has resulted in the creation of lightweight, fine-grained, and self-contained microservices. Multiple microservices can be linked together via calls and inter-dependencies to form complex functions. One of the challenges in managing microservices is provisioning the optimal amount of resources for microservices in the chain to ensure application performance while improving resource usage efficiency. This paper presents ChainsFormer, a framework that analyzes microservice inter-dependencies to identify critical chains and nodes, and provision resources based on reinforcement learning. To analyze chains, ChainsFormer utilizes light-weight machine learning techniques to address the dynamic nature of microservice chains and workloads. For resource provisioning, a reinforcement learning approach is used that combines vertical and horizontal scaling to determine the amount of allocated resources and the number of replicates. We evaluate the effectiveness of ChainsFormer using realistic applications and traces on a real testbed based on Kubernetes. Our experimental results demonstrate that ChainsFormer can reduce response time by up to 26% and improve processed requests per second by 8% compared with state-of-the-art techniques.
Trusted Execution Environments (TEEs) embedded in IoT devices provide a deployable solution to secure IoT applications at the hardware level. By design, in TEEs, the Trusted Operating System (Trusted OS) is the primary component. It enables the TEE to use security-based design techniques, such as data encryption and identity authentication. Once a Trusted OS has been exploited, the TEE can no longer ensure security. However, Trusted OSes for IoT devices have received little security analysis, which is challenging from several perspectives: (1) Trusted OSes are closed-source and have an unfavorable environment for sending test cases and collecting feedback. (2) Trusted OSes have complex data structures and require a stateful workflow, which limits existing vulnerability detection tools. To address the challenges, we present SyzTrust, the first state-aware fuzzing framework for vetting the security of resource-limited Trusted OSes. SyzTrust adopts a hardware-assisted framework to enable fuzzing Trusted OSes directly on IoT devices as well as tracking state and code coverage non-invasively. SyzTrust utilizes composite feedback to guide the fuzzer to effectively explore more states as well as to increase the code coverage. We evaluate SyzTrust on Trusted OSes from three major vendors: Samsung, Tsinglink Cloud, and Ali Cloud. These systems run on Cortex M23/33 MCUs, which provide the necessary abstraction for embedded TEEs. We discovered 70 previously unknown vulnerabilities in their Trusted OSes, receiving 10 new CVEs so far. Furthermore, compared to the baseline, SyzTrust has demonstrated significant improvements, including 66% higher code coverage, 651% higher state coverage, and 31% improved vulnerability-finding capability. We report all discovered new vulnerabilities to vendors and open source SyzTrust.
With privacy-preserving and traceability properties, group signature is a cryptosystem with central role in cryptography. And there are lots of application scenarios. A new extension concept of group signature is presented, namely group signature with self-proof capacity. For a legitimate group signature, the real signer can prove that the signature is indeed signed by him/her. While for the other members of the group, they can prove that the signature is not signed by him/her. The former can be used for claiming money reward from the police, while the latter can be used for proving one's innocent in a criminal investigation.
In recommender systems, knowledge graph (KG) can offer critical information that is lacking in the original user-item interaction graph (IG). Recent process has explored this direction and shows that contrastive learning is a promising way to integrate both. However, we observe that existing KG-enhanced recommenders struggle in balancing between the two contrastive views of IG and KG, making them sometimes even less effective than simply applying contrastive learning on IG without using KG. In this paper, we propose a new contrastive learning framework for KG-enhanced recommendation. Specifically, to make full use of the knowledge, we construct two separate contrastive views for KG and IG, and maximize their mutual information; to ease the contrastive learning on the two views, we further fuse KG information into IG in a one-direction manner.Extensive experimental results on three real-world datasets demonstrate the effectiveness and efficiency of our method, compared to the state-of-the-art. Our code is available through the anonymous link://figshare.com/articles/conference_contribution/SimKGCL/22783382
Microarchitectural timing side channels have been thoroughly investigated as a security threat in hardware designs featuring shared buffers (e.g., caches) and/or parallelism between attacker and victim task execution. Contradicting common intuitions, recent activities demonstrate, however, that this threat is real also in microcontroller SoCs without such features. In this paper, we describe SoC-wide timing side channels previously neglected by security analysis and present a new formal method to close this gap. In a case study with the RISC-V Pulpissimo SoC platform, our method found a vulnerability to a so far unknown attack variant that allows an attacker to obtain information about a victim's memory access behavior. After implementing a conservative fix, we were able to verify that the SoC is now secure w.r.t. timing side channels.
Digital MemComputing machines (DMMs), which employ nonlinear dynamical systems with memory (time non-locality), have proven to be a robust and scalable unconventional computing approach for solving a wide variety of combinatorial optimization problems. However, most of the research so far has focused on the numerical simulations of the equations of motion of DMMs. This inevitably subjects time to discretization, which brings its own (numerical) issues that would be absent in actual physical systems operating in continuous time. Although hardware realizations of DMMs have been previously suggested, their implementation would require materials and devices that are not so easy to integrate with traditional electronics. In this study, we propose a novel hardware design for DMMs that leverages only conventional electronic components. Our findings suggest that this design offers a marked improvement in speed compared to existing realizations of these machines, without requiring special materials or novel device concepts. Moreover, the absence of numerical noise promises enhanced stability over extended periods of the machines' operation, paving the way for addressing even more complex problems.
Recently, deep multiagent reinforcement learning (MARL) has become a highly active research area as many real-world problems can be inherently viewed as multiagent systems. A particularly interesting and widely applicable class of problems is the partially observable cooperative multiagent setting, in which a team of agents learns to coordinate their behaviors conditioning on their private observations and commonly shared global reward signals. One natural solution is to resort to the centralized training and decentralized execution paradigm. During centralized training, one key challenge is the multiagent credit assignment: how to allocate the global rewards for individual agent policies for better coordination towards maximizing system-level's benefits. In this paper, we propose a new method called Q-value Path Decomposition (QPD) to decompose the system's global Q-values into individual agents' Q-values. Unlike previous works which restrict the representation relation of the individual Q-values and the global one, we leverage the integrated gradient attribution technique into deep MARL to directly decompose global Q-values along trajectory paths to assign credits for agents. We evaluate QPD on the challenging StarCraft II micromanagement tasks and show that QPD achieves the state-of-the-art performance in both homogeneous and heterogeneous multiagent scenarios compared with existing cooperative MARL algorithms.
There is a resurgent interest in developing intelligent open-domain dialog systems due to the availability of large amounts of conversational data and the recent progress on neural approaches to conversational AI. Unlike traditional task-oriented bots, an open-domain dialog system aims to establish long-term connections with users by satisfying the human need for communication, affection, and social belonging. This paper reviews the recent works on neural approaches that are devoted to addressing three challenges in developing such systems: semantics, consistency, and interactiveness. Semantics requires a dialog system to not only understand the content of the dialog but also identify user's social needs during the conversation. Consistency requires the system to demonstrate a consistent personality to win users trust and gain their long-term confidence. Interactiveness refers to the system's ability to generate interpersonal responses to achieve particular social goals such as entertainment, conforming, and task completion. The works we select to present here is based on our unique views and are by no means complete. Nevertheless, we hope that the discussion will inspire new research in developing more intelligent dialog systems.
In this paper, we focus on three problems in deep learning based medical image segmentation. Firstly, U-net, as a popular model for medical image segmentation, is difficult to train when convolutional layers increase even though a deeper network usually has a better generalization ability because of more learnable parameters. Secondly, the exponential ReLU (ELU), as an alternative of ReLU, is not much different from ReLU when the network of interest gets deep. Thirdly, the Dice loss, as one of the pervasive loss functions for medical image segmentation, is not effective when the prediction is close to ground truth and will cause oscillation during training. To address the aforementioned three problems, we propose and validate a deeper network that can fit medical image datasets that are usually small in the sample size. Meanwhile, we propose a new loss function to accelerate the learning process and a combination of different activation functions to improve the network performance. Our experimental results suggest that our network is comparable or superior to state-of-the-art methods.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.