The discrete $\alpha$-neighbor $p$-center problem (d-$\alpha$-$p$CP) is an emerging variant of the classical $p$-center problem which recently got attention in literature. In this problem, we are given a discrete set of points and we need to locate $p$ facilities on these points in such a way that the maximum distance between each point where no facility is located and its $\alpha$-closest facility is minimized. The only existing algorithms in literature for solving the d-$\alpha$-$p$CP are approximation algorithms and two recently proposed heuristics. In this work, we present two integer programming formulations for the d-$\alpha$-$p$CP, together with lifting of inequalities, valid inequalities, inequalities that do not change the optimal objective function value and variable fixing procedures. We provide theoretical results on the strength of the formulations and convergence results for the lower bounds obtained after applying the lifting procedures or the variable fixing procedures in an iterative fashion. Based on our formulations and theoretical results, we develop branch-and-cut (B&C) algorithms, which are further enhanced with a starting heuristic and a primal heuristic. We evaluate the effectiveness of our B&C algorithms using instances from literature. Our algorithms are able to solve 116 out of 194 instances from literature to proven optimality, with a runtime of under a minute for most of them. By doing so, we also provide improved solution values for 116 instances.
Trajectory optimization is a powerful tool for robot motion planning and control. State-of-the-art general-purpose nonlinear programming solvers are versatile, handle constraints effectively and provide a high numerical robustness, but they are slow because they do not fully exploit the optimal control problem structure at hand. Existing structure-exploiting solvers are fast, but they often lack techniques to deal with nonlinearity or rely on penalty methods to enforce (equality or inequality) path constraints. This work presents Fatrop: a trajectory optimization solver that is fast and benefits from the salient features of general-purpose nonlinear optimization solvers. The speed-up is mainly achieved through the integration of a specialized linear solver, based on a Riccati recursion that is generalized to also support stagewise equality constraints. To demonstrate the algorithm's potential, it is benchmarked on a set of robot problems that are challenging from a numerical perspective, including problems with a minimum-time objective and no-collision constraints. The solver is shown to solve problems for trajectory generation of a quadrotor, a robot manipulator and a truck-trailer problem in a few tens of milliseconds. The algorithm's C++-code implementation accompanies this work as open source software, released under the GNU Lesser General Public License (LGPL). This software framework may encourage and enable the robotics community to use trajectory optimization in more challenging applications.
The vertex cover problem is a fundamental and widely studied combinatorial optimization problem. It is known that its standard linear programming relaxation is integral for bipartite graphs and half-integral for general graphs. As a consequence, the natural rounding algorithm based on this relaxation computes an optimal solution for bipartite graphs and a $2$-approximation for general graphs. This raises the question of whether one can interpolate the rounding curve of the standard linear programming relaxation in a beyond the worst-case manner, depending on how close the graph is to being bipartite. In this paper, we consider a simple rounding algorithm that exploits the knowledge of an induced bipartite subgraph to attain improved approximation ratios. Equivalently, we suppose that we work with a pair $(G, S)$, consisting of a graph with an odd cycle transversal. If $S$ is a stable set, we prove a tight approximation ratio of $1 + 1/\rho$, where $2\rho -1$ denotes the odd girth (i.e., length of the shortest odd cycle) of the contracted graph $\tilde{G} := G /S$ and satisfies $\rho \in [2,\infty]$. If $S$ is an arbitrary set, we prove a tight approximation ratio of $\left(1+1/\rho \right) (1 - \alpha) + 2 \alpha$, where $\alpha \in [0,1]$ is a natural parameter measuring the quality of the set $S$. The technique used to prove tight improved approximation ratios relies on a structural analysis of the contracted graph $\tilde{G}$. Tightness is shown by constructing classes of weight functions matching the obtained upper bounds. As a byproduct of the structural analysis, we obtain improved tight bounds on the integrality gap and the fractional chromatic number of 3-colorable graphs. We also discuss algorithmic applications in order to find good odd cycle transversals and show optimality of the analysis.
Constraint programming is known for being an efficient approach for solving combinatorial problems. Important design choices in a solver are the branching heuristics, which are designed to lead the search to the best solutions in a minimum amount of time. However, developing these heuristics is a time-consuming process that requires problem-specific expertise. This observation has motivated many efforts to use machine learning to automatically learn efficient heuristics without expert intervention. To the best of our knowledge, it is still an open research question. Although several generic variable-selection heuristics are available in the literature, the options for a generic value-selection heuristic are more scarce. In this paper, we propose to tackle this issue by introducing a generic learning procedure that can be used to obtain a value-selection heuristic inside a constraint programming solver. This has been achieved thanks to the combination of a deep Q-learning algorithm, a tailored reward signal, and a heterogeneous graph neural network architecture. Experiments on graph coloring, maximum independent set, and maximum cut problems show that our framework is able to find better solutions close to optimality without requiring a large amounts of backtracks while being generic.
In May 2022, an apparent speculative attack, followed by market panic, led to the precipitous downfall of UST, one of the most popular stablecoins at that time. However, UST is not the only stablecoin to have been depegged in the past. Designing resilient and long-term stable coins, therefore, appears to present a hard challenge. To further scrutinize existing stablecoin designs and ultimately lead to more robust systems, we need to understand where volatility emerges. Our work provides a game-theoretical model aiming to help identify why stablecoins suffer from a depeg. This game-theoretical model reveals that stablecoins have different price equilibria depending on the coin's architecture and mechanism to minimize volatility. Moreover, our theory is supported by extensive empirical data, spanning $1$ year. To that end, we collect daily prices for 22 stablecoins and on-chain data from five blockchains including the Ethereum and the Terra blockchain.
In this work, we compare the performance of the Quantum Approximate Optimization Algorithm (QAOA) with state-of-the-art classical solvers such as Gurobi and MQLib to solve the combinatorial optimization problem MaxCut on 3-regular graphs. The goal is to identify under which conditions QAOA can achieve "quantum advantage" over classical algorithms, in terms of both solution quality and time to solution. One might be able to achieve quantum advantage on hundreds of qubits and moderate depth $p$ by sampling the QAOA state at a frequency of order 10 kHz. We observe, however, that classical heuristic solvers are capable of producing high-quality approximate solutions in linear time complexity. In order to match this quality for $\textit{large}$ graph sizes $N$, a quantum device must support depth $p>11$. Otherwise, we demonstrate that the number of required samples grows exponentially with $N$, hindering the scalability of QAOA with $p\leq11$. These results put challenging bounds on achieving quantum advantage for QAOA MaxCut on 3-regular graphs. Other problems, such as different graphs, weighted MaxCut, maximum independent set, and 3-SAT, may be better suited for achieving quantum advantage on near-term quantum devices.
The Gromov--Hausdorff distance measures the difference in shape between compact metric spaces and poses a notoriously difficult problem in combinatorial optimization. We introduce its quadratic relaxation over a convex polytope whose solutions provably deliver the Gromov--Hausdorff distance. The optimality guarantee is enabled by the fact that the search space of our approach is not constrained to a generalization of bijections, unlike in other relaxations such as the Gromov--Wasserstein distance. We suggest the Frank--Wolfe algorithm with $O(n^3)$-time iterations for solving the relaxation and numerically demonstrate its performance on metric spaces of hundreds of points. In particular, we obtain a new upper bound of the Gromov--Hausdorff distance between the unit circle and the unit hemisphere equipped with Euclidean metric. Our approach is implemented as a Python package dGH.
The selection of Gaussian kernel parameters plays an important role in the applications of support vector classification (SVC). A commonly used method is the k-fold cross validation with grid search (CV), which is extremely time-consuming because it needs to train a large number of SVC models. In this paper, a new approach is proposed to train SVC and optimize the selection of Gaussian kernel parameters. We first formulate the training and parameter selection of SVC as a minimax optimization problem named as MaxMin-L2-SVC-NCH, in which the minimization problem is an optimization problem of finding the closest points between two normal convex hulls (L2-SVC-NCH) while the maximization problem is an optimization problem of finding the optimal Gaussian kernel parameters. A lower time complexity can be expected in MaxMin-L2-SVC-NCH because CV is not needed. We then propose a projected gradient algorithm (PGA) for training L2-SVC-NCH. The famous sequential minimal optimization (SMO) algorithm is a special case of the PGA. Thus, the PGA can provide more flexibility than the SMO. Furthermore, the solution of the maximization problem is done by a gradient ascent algorithm with dynamic learning rate. The comparative experiments between MaxMin-L2-SVC-NCH and the previous best approaches on public datasets show that MaxMin-L2-SVC-NCH greatly reduces the number of models to be trained while maintaining competitive test accuracy. These findings indicate that MaxMin-L2-SVC-NCH is a better choice for SVC tasks.
DAG (directed acyclic graph) tasks are widely used to model parallel real-time workload. The real-time performance of a DAG task not only depends on its total workload, but also its graph structure. Intuitively, with the same total workload, a DAG task with looser precedence constraints tends to have better real-time performance in terms of worst-case response time. However, this paper shows that actually we can shorten the worst-case response time of a DAG task by carefully adding new edges and constructing longer paths. We develop techniques based on the state-of-the-art DAG response time analysis techniques to properly add new edges so that the worst-case response time bound guaranteed by formal analysis can be significantly reduced. Experiments under different parameter settings demonstrate the effectiveness of the proposed techniques.
Analysis of high-dimensional data, where the number of covariates is larger than the sample size, is a topic of current interest. In such settings, an important goal is to estimate the signal level $\tau^2$ and noise level $\sigma^2$, i.e., to quantify how much variation in the response variable can be explained by the covariates, versus how much of the variation is left unexplained. This thesis considers the estimation of these quantities in a semi-supervised setting, where for many observations only the vector of covariates $X$ is given with no responses $Y$. Our main research question is: how can one use the unlabeled data to better estimate $\tau^2$ and $\sigma^2$? We consider two frameworks: a linear regression model and a linear projection model in which linearity is not assumed. In the first framework, while linear regression is used, no sparsity assumptions on the coefficients are made. In the second framework, the linearity assumption is also relaxed and we aim to estimate the signal and noise levels defined by the linear projection. We first propose a naive estimator which is unbiased and consistent, under some assumptions, in both frameworks. We then show how the naive estimator can be improved by using zero-estimators, where a zero-estimator is a statistic arising from the unlabeled data, whose expected value is zero. In the first framework, we calculate the optimal zero-estimator improvement and discuss ways to approximate the optimal improvement. In the second framework, such optimality does no longer hold and we suggest two zero-estimators that improve the naive estimator although not necessarily optimally. Furthermore, we show that our approach reduces the variance for general initial estimators and we present an algorithm that potentially improves any initial estimator. Lastly, we consider four datasets and study the performance of our suggested methods.
Let $\hat\Sigma=\frac{1}{n}\sum_{i=1}^n X_i\otimes X_i$ denote the sample covariance operator of centered i.i.d. observations $X_1,\dots,X_n$ in a real separable Hilbert space, and let $\Sigma=\mathbf{E}(X_1\otimes X_1)$. The focus of this paper is to understand how well the bootstrap can approximate the distribution of the operator norm error $\sqrt n\|\hat\Sigma-\Sigma\|_{\text{op}}$, in settings where the eigenvalues of $\Sigma$ decay as $\lambda_j(\Sigma)\asymp j^{-2\beta}$ for some fixed parameter $\beta>1/2$. Our main result shows that the bootstrap can approximate the distribution of $\sqrt n\|\hat\Sigma-\Sigma\|_{\text{op}}$ at a rate of order $n^{-\frac{\beta-1/2}{2\beta+4+\epsilon}}$ with respect to the Kolmogorov metric, for any fixed $\epsilon>0$. In particular, this shows that the bootstrap can achieve near $n^{-1/2}$ rates in the regime of large $\beta$--which substantially improves on previous near $n^{-1/6}$ rates in the same regime. In addition to obtaining faster rates, our analysis leverages a fundamentally different perspective based on coordinate-free techniques. Moreover, our result holds in greater generality, and we propose a new model that is compatible with both elliptical and Mar\v{c}enko-Pastur models in high-dimensional Euclidean spaces, which may be of independent interest.