The maximum entropy encoding framework provides a unified perspective for many non-contrastive learning methods like SimSiam, Barlow Twins, and MEC. Inspired by this framework, we introduce Matrix-SSL, a novel approach that leverages matrix information theory to interpret the maximum entropy encoding loss as matrix uniformity loss. Furthermore, Matrix-SSL enhances the maximum entropy encoding method by seamlessly incorporating matrix alignment loss, directly aligning covariance matrices in different branches. Experimental results reveal that Matrix-SSL outperforms state-of-the-art methods on the ImageNet dataset under linear evaluation settings and on MS-COCO for transfer learning tasks. Specifically, when performing transfer learning tasks on MS-COCO, our method outperforms previous SOTA methods such as MoCo v2 and BYOL up to 3.3% with only 400 epochs compared to 800 epochs pre-training. We also try to introduce representation learning into the language modeling regime by fine-tuning a 7B model using matrix cross-entropy loss, with a margin of 3.1% on the GSM8K dataset over the standard cross-entropy loss. Code available at //github.com/yifanzhang-pro/Matrix-SSL.
This study explores the transfer learning capabilities of the TrOCR architecture to Spanish. TrOCR is a transformer-based Optical Character Recognition (OCR) model renowned for its state-of-the-art performance in English benchmarks. Inspired by Li et al. assertion regarding its adaptability to multilingual text recognition, we investigate two distinct approaches to adapt the model to a new language: integrating an English TrOCR encoder with a language specific decoder and train the model on this specific language, and fine-tuning the English base TrOCR model on a new language data. Due to the scarcity of publicly available datasets, we present a resource-efficient pipeline for creating OCR datasets in any language, along with a comprehensive benchmark of the different image generation methods employed with a focus on Visual Rich Documents (VRDs). Additionally, we offer a comparative analysis of the two approaches for the Spanish language, demonstrating that fine-tuning the English TrOCR on Spanish yields superior recognition than the language specific decoder for a fixed dataset size. We evaluate our model employing character and word error rate metrics on a public available printed dataset, comparing the performance against other open-source and cloud OCR spanish models. As far as we know, these resources represent the best open-source model for OCR in Spanish. The Spanish TrOCR models are publicly available on HuggingFace [20] and the code to generate the dataset is available on Github [25].
Recently, automatic speaker verification (ASV) based on deep learning is easily contaminated by adversarial attacks, which is a new type of attack that injects imperceptible perturbations to audio signals so as to make ASV produce wrong decisions. This poses a significant threat to the security and reliability of ASV systems. To address this issue, we propose a Diffusion-Based Adversarial Purification (DAP) method that enhances the robustness of ASV systems against such adversarial attacks. Our method leverages a conditional denoising diffusion probabilistic model to effectively purify the adversarial examples and mitigate the impact of perturbations. DAP first introduces controlled noise into adversarial examples, and then performs a reverse denoising process to reconstruct clean audio. Experimental results demonstrate the efficacy of the proposed DAP in enhancing the security of ASV and meanwhile minimizing the distortion of the purified audio signals.
This study evaluates the use of machine learning, specifically the Random Forest Classifier, to differentiate normal and pathological swallowing sounds. Employing a commercially available wearable stethoscope, we recorded swallows from both healthy adults and patients with dysphagia. The analysis revealed statistically significant differences in acoustic features, such as spectral crest, and zero-crossing rate between normal and pathological swallows, while no discriminating differences were demonstrated between different fluidand diet consistencies. The system demonstrated fair sensitivity (mean plus or minus SD: 74% plus or minus 8%) and specificity (89% plus or minus 6%) for dysphagic swallows. The model attained an overall accuracy of 83% plus or minus 3%, and F1 score of 78% plus or minus 5%. These results demonstrate that machine learning can be a valuable tool in non-invasive dysphagia assessment, although challenges such as sampling rate limitations and variability in sensitivity and specificity in discriminating between normal and pathological sounds are noted. The study underscores the need for further research to optimize these techniques for clinical use.
The reward model for Reinforcement Learning from Human Feedback (RLHF) has proven effective in fine-tuning Large Language Models (LLMs). Notably, collecting human feedback for RLHF can be resource-intensive and lead to scalability issues for LLMs and complex tasks. Our proposed framework Proto-RM leverages prototypical networks to enhance reward models under limited human feedback. By enabling stable and reliable structural learning from fewer samples, Proto-RM significantly enhances LLMs' adaptability and accuracy in interpreting human preferences. Extensive experiments on various datasets demonstrate that Proto-RM significantly improves the performance of reward models and LLMs in human feedback tasks, achieving comparable and usually better results than traditional methods, while requiring significantly less data. in data-limited scenarios. This research offers a promising direction for enhancing the efficiency of reward models and optimizing the fine-tuning of language models under restricted feedback conditions.
Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.
With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.
We propose GAN-Supervised Learning, a framework for learning discriminative models and their GAN-generated training data jointly end-to-end. We apply our framework to the dense visual alignment problem. Inspired by the classic Congealing method, our GANgealing algorithm trains a Spatial Transformer to map random samples from a GAN trained on unaligned data to a common, jointly-learned target mode. We show results on eight datasets, all of which demonstrate our method successfully aligns complex data and discovers dense correspondences. GANgealing significantly outperforms past self-supervised correspondence algorithms and performs on-par with (and sometimes exceeds) state-of-the-art supervised correspondence algorithms on several datasets -- without making use of any correspondence supervision or data augmentation and despite being trained exclusively on GAN-generated data. For precise correspondence, we improve upon state-of-the-art supervised methods by as much as $3\times$. We show applications of our method for augmented reality, image editing and automated pre-processing of image datasets for downstream GAN training.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.
The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.