Biogenic Volatile Organic Compounds (BVOCs) emitted from the terrestrial ecosystem into the Earth's atmosphere are an important component of atmospheric chemistry. Due to the scarcity of measurement, a reliable enhancement of BVOCs emission maps can aid in providing denser data for atmospheric chemical, climate, and air quality models. In this work, we propose a strategy to super-resolve coarse BVOC emission maps by simultaneously exploiting the contributions of different compounds. To this purpose, we first accurately investigate the spatial inter-connections between several BVOC species. Then, we exploit the found similarities to build a Multi-Image Super-Resolution (MISR) system, in which a number of emission maps associated with diverse compounds are aggregated to boost Super-Resolution (SR) performance. We compare different configurations regarding the species and the number of joined BVOCs. Our experimental results show that incorporating BVOCs' relationship into the process can substantially improve the accuracy of the super-resolved maps. Interestingly, the best results are achieved when we aggregate the emission maps of strongly uncorrelated compounds. This peculiarity seems to confirm what was already guessed for other data-domains, i.e., joined uncorrelated information are more helpful than correlated ones to boost MISR performance. Nonetheless, the proposed work represents the first attempt in SR of BVOC emissions through the fusion of multiple different compounds.
This paper concerns the design of a multidimensional Chebyshev interpolation based method for a differential game theory problem. In continuous game theory problems, it might be difficult to find analytical solutions, so numerical methods have to be applied. As the number of players grows, this may increase computational costs due to the curse of dimensionality. To handle this, several techniques may be applied and paralellization can be employed to reduce the computational time cost. Chebyshev multidimensional interpolation allows efficient multiple evaluations simultaneously along several dimensions, so this can be employed to design a tensorial method which performs many computations at the same time. This method can also be adapted to handle parallel computation and, the combination of these techniques, greatly reduces the total computational time cost. We show how this technique can be applied in a pollution differential game. Numerical results, including error behaviour and computational time cost, comparing this technique with a spline-parallelized method are also included.
Pseudo-random number generators (PRNGs) play an important role to ensure the security and confidentiality of image cryptographic algorithms. Their primary function is to generate a sequence of numbers that possesses unpredictability and randomness, which is crucial for the algorithms to work effectively and provide the desired level of security. However, traditional PRNGs frequently encounter limitations like insufficient randomness, predictability, and vulnerability to cryptanalysis attacks. To overcome these limitations, we propose a novel method namely an elliptic curve genetic algorithm (ECGA) for the construction of an image-dependent pseudo-random number generator (IDPRNG) that merges elliptic curves (ECs) and a multi-objective genetic algorithm (MOGA). The ECGA consists of two primary stages. First, we generate an EC-based initial sequence of random numbers using pixels of a plain-image and parameters of an EC, that depart from traditional methods of population initialization. In our proposed approach, the image itself serves as the seed for the initial population in the genetic algorithm optimization, taking into account the image-dependent nature of cryptographic applications. This allows the PRNG to adapt its behavior to the unique characteristics of the input image, leading to enhanced security and improved resistance against differential attacks. Furthermore, the use of a good initial population reduces the number of generations required by a genetic algorithm, which results in decreased computational cost. In the second stage, we use well-known operations of a genetic algorithm to optimize the generated sequence by maximizing a multi-objective fitness function that is based on both the information entropy and the period of the PRNG. By combining elliptic curves and genetic algorithms, we enhance the randomness and security of the ECGA.
Recently, U-shaped networks have dominated the field of medical image segmentation due to their simple and easily tuned structure. However, existing U-shaped segmentation networks: 1) mostly focus on designing complex self-attention modules to compensate for the lack of long-term dependence based on convolution operation, which increases the overall number of parameters and computational complexity of the network; 2) simply fuse the features of encoder and decoder, ignoring the connection between their spatial locations. In this paper, we rethink the above problem and build a lightweight medical image segmentation network, called SegNetr. Specifically, we introduce a novel SegNetr block that can perform local-global interactions dynamically at any stage and with only linear complexity. At the same time, we design a general information retention skip connection (IRSC) to preserve the spatial location information of encoder features and achieve accurate fusion with the decoder features. We validate the effectiveness of SegNetr on four mainstream medical image segmentation datasets, with 59\% and 76\% fewer parameters and GFLOPs than vanilla U-Net, while achieving segmentation performance comparable to state-of-the-art methods. Notably, the components proposed in this paper can be applied to other U-shaped networks to improve their segmentation performance.
Learning with rejection is a prototypical model for studying the interaction between humans and AI on prediction tasks. The model has two components, a predictor and a rejector. Upon the arrival of a sample, the rejector first decides whether to accept it; if accepted, the predictor fulfills the prediction task, and if rejected, the prediction will be deferred to humans. The learning problem requires learning a predictor and a rejector simultaneously. This changes the structure of the conventional loss function and often results in non-convexity and inconsistency issues. For the classification with rejection problem, several works develop surrogate losses for the jointly learning with provable consistency guarantees; in parallel, there has been less work for the regression counterpart. We study the regression with rejection (RwR) problem and investigate the no-rejection learning strategy which treats the RwR problem as a standard regression task to learn the predictor. We establish that the suboptimality of the no-rejection learning strategy observed in the literature can be mitigated by enlarging the function class of the predictor. Then we introduce the truncated loss to single out the learning for the predictor and we show that a consistent surrogate property can be established for the predictor individually in an easier way than for the predictor and the rejector jointly. Our findings advocate for a two-step learning procedure that first uses all the data to learn the predictor and then calibrates the prediction loss for the rejector. It is better aligned with the common intuition that more data samples will lead to a better predictor and it calls for more efforts on a better design of calibration algorithms for learning the rejector. While our discussions mainly focus on the regression problem, the theoretical results and insights generalize to the classification problem as well.
In this paper, we construct an efficient linear and fully decoupled finite difference scheme for wormhole propagation with heat transmission process on staggered grids, which only requires solving a sequence of linear elliptic equations at each time step. We first derive the positivity preserving properties for the discrete porosity and its difference quotient in time, and then obtain optimal error estimates for the velocity, pressure, concentration, porosity and temperature in different norms rigorously and carefully by establishing several auxiliary lemmas for the highly coupled nonlinear system. Numerical experiments in two- and three-dimensional cases are provided to verify our theoretical results and illustrate the capabilities of the constructed method.
Graph neural networks generalize conventional neural networks to graph-structured data and have received widespread attention due to their impressive representation ability. In spite of the remarkable achievements, the performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry, especially for datasets with highly non-Euclidean latent anatomy. Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution, owing to its exponential growth property. In this survey, we comprehensively revisit the technical details of the current hyperbolic graph neural networks, unifying them into a general framework and summarizing the variants of each component. More importantly, we present various HGNN-related applications. Last, we also identify several challenges, which potentially serve as guidelines for further flourishing the achievements of graph learning in hyperbolic spaces.
Multi-object tracking (MOT) is a crucial component of situational awareness in military defense applications. With the growing use of unmanned aerial systems (UASs), MOT methods for aerial surveillance is in high demand. Application of MOT in UAS presents specific challenges such as moving sensor, changing zoom levels, dynamic background, illumination changes, obscurations and small objects. In this work, we present a robust object tracking architecture aimed to accommodate for the noise in real-time situations. We propose a kinematic prediction model, called Deep Extended Kalman Filter (DeepEKF), in which a sequence-to-sequence architecture is used to predict entity trajectories in latent space. DeepEKF utilizes a learned image embedding along with an attention mechanism trained to weight the importance of areas in an image to predict future states. For the visual scoring, we experiment with different similarity measures to calculate distance based on entity appearances, including a convolutional neural network (CNN) encoder, pre-trained using Siamese networks. In initial evaluation experiments, we show that our method, combining scoring structure of the kinematic and visual models within a MHT framework, has improved performance especially in edge cases where entity motion is unpredictable, or the data presents frames with significant gaps.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.
In structure learning, the output is generally a structure that is used as supervision information to achieve good performance. Considering the interpretation of deep learning models has raised extended attention these years, it will be beneficial if we can learn an interpretable structure from deep learning models. In this paper, we focus on Recurrent Neural Networks (RNNs) whose inner mechanism is still not clearly understood. We find that Finite State Automaton (FSA) that processes sequential data has more interpretable inner mechanism and can be learned from RNNs as the interpretable structure. We propose two methods to learn FSA from RNN based on two different clustering methods. We first give the graphical illustration of FSA for human beings to follow, which shows the interpretability. From the FSA's point of view, we then analyze how the performance of RNNs are affected by the number of gates, as well as the semantic meaning behind the transition of numerical hidden states. Our results suggest that RNNs with simple gated structure such as Minimal Gated Unit (MGU) is more desirable and the transitions in FSA leading to specific classification result are associated with corresponding words which are understandable by human beings.
Multivariate time series forecasting is extensively studied throughout the years with ubiquitous applications in areas such as finance, traffic, environment, etc. Still, concerns have been raised on traditional methods for incapable of modeling complex patterns or dependencies lying in real word data. To address such concerns, various deep learning models, mainly Recurrent Neural Network (RNN) based methods, are proposed. Nevertheless, capturing extremely long-term patterns while effectively incorporating information from other variables remains a challenge for time-series forecasting. Furthermore, lack-of-explainability remains one serious drawback for deep neural network models. Inspired by Memory Network proposed for solving the question-answering task, we propose a deep learning based model named Memory Time-series network (MTNet) for time series forecasting. MTNet consists of a large memory component, three separate encoders, and an autoregressive component to train jointly. Additionally, the attention mechanism designed enable MTNet to be highly interpretable. We can easily tell which part of the historic data is referenced the most.