We present a new approach to stabilizing high-order Runge-Kutta discontinuous Galerkin (RKDG) schemes using weighted essentially non-oscillatory (WENO) reconstructions in the context of hyperbolic conservation laws. In contrast to RKDG schemes that overwrite finite element solutions with WENO reconstructions, our approach employs the reconstruction-based smoothness sensor presented by Kuzmin and Vedral (J. Comput. Phys. 487:112153, 2023) to control the amount of added numerical dissipation. Incorporating a dissipation-based WENO stabilization term into a discontinuous Galerkin (DG) discretization, the proposed methodology achieves high-order accuracy while effectively capturing discontinuities in the solution. As such, our approach offers an attractive alternative to WENO-based slope limiters for DG schemes. The reconstruction procedure that we use performs Hermite interpolation on stencils composed of a mesh cell and its neighboring cells. The amount of numerical dissipation is determined by the relative differences between the partial derivatives of reconstructed candidate polynomials and those of the underlying finite element approximation. The employed smoothness sensor takes all derivatives into account to properly assess the local smoothness of a high-order DG solution. Numerical experiments demonstrate the ability of our scheme to capture discontinuities sharply. Optimal convergence rates are obtained for all polynomial degrees.
Within the next decade the Laser Interferometer Space Antenna (LISA) is due to be launched, providing the opportunity to extract physics from stellar objects and systems, such as \textit{Extreme Mass Ratio Inspirals}, (EMRIs) otherwise undetectable to ground based interferometers and Pulsar Timing Arrays (PTA). Unlike previous sources detected by the currently available observational methods, these sources can \textit{only} be simulated using an accurate computation of the gravitational self-force. Whereas the field has seen outstanding progress in the frequency domain, metric reconstruction and self-force calculations are still an open challenge in the time domain. Such computations would not only further corroborate frequency domain calculations and models, but also allow for full self-consistent evolution of the orbit under the effect of the self-force. Given we have \textit{a priori} information about the local structure of the discontinuity at the particle, we will show how to construct discontinuous spatial and temporal discretisations by operating on discontinuous Lagrange and Hermite interpolation formulae and hence recover higher order accuracy. In this work we demonstrate how this technique in conjunction with well-suited gauge choice (hyperboloidal slicing) and numerical (discontinuous collocation with time symmetric) methods can provide a relatively simple method of lines numerical algorithm to the problem. This is the first of a series of papers studying the behaviour of a point-particle prescribing circular geodesic motion in Schwarzschild in the \textit{time domain}. In this work we describe the numerical machinery necessary for these computations and show not only our work is capable of highly accurate flux radiation measurements but it also shows suitability for evaluation of the necessary field and it's derivatives at the particle limit.
Continual learning and few-shot learning are important frontiers in progress towards broader Machine Learning (ML) capabilities. There is a growing body of work in both, but few works combining the two. One exception is the Continual few-shot Learning (CFSL) framework of Antoniou et al. arXiv:2004.11967. In this study, we extend CFSL in two ways that capture a broader range of challenges, important for intelligent agent behaviour in real-world conditions. First, we modify CFSL to make it more comparable to standard continual learning experiments, where usually a much larger number of classes are presented. Second, we introduce an 'instance test' which requires recognition of specific instances of classes -- a capability of animal cognition that is usually neglected in ML. For an initial exploration of ML model performance under these conditions, we selected representative baseline models from the original CFSL work and added a model variant with replay. As expected, learning more classes is more difficult than the original CFSL experiments, and interestingly, the way in which image instances and classes are presented affects classification performance. Surprisingly, accuracy in the baseline instance test is comparable to other classification tasks, but poor given significant occlusion and noise. The use of replay for consolidation improves performance substantially for both types of tasks, but particularly the instance test.
This paper concerns the approximation of smooth, high-dimensional functions from limited samples using polynomials. This task lies at the heart of many applications in computational science and engineering - notably, some of those arising from parametric modelling and computational uncertainty quantification. It is common to use Monte Carlo sampling in such applications, so as not to succumb to the curse of dimensionality. However, it is well known that such a strategy is theoretically suboptimal. Specifically, there are many polynomial spaces of dimension $n$ for which the sample complexity scales log-quadratically, i.e., like $c \cdot n^2 \cdot \log(n)$ as $n \rightarrow \infty$. This well-documented phenomenon has led to a concerted effort over the last decade to design improved, and moreover, near-optimal strategies, whose sample complexities scale log-linearly, or even linearly in $n$. In this work we demonstrate that Monte Carlo is actually a perfectly good strategy in high dimensions, despite its apparent suboptimality. We first document this phenomenon empirically via a systematic set of numerical experiments. Next, we present a theoretical analysis that rigorously justifies this fact in the case of holomorphic functions of infinitely-many variables. We show that there is a least-squares approximation based on $m$ Monte Carlo samples whose error decays algebraically fast in $m/\log(m)$, with a rate that is the same as that of the best $n$-term polynomial approximation. This result is non-constructive, since it assumes knowledge of a suitable polynomial subspace in which to perform the approximation. We next present a compressed sensing-based scheme that achieves the same rate, except for a larger polylogarithmic factor. This scheme is practical, and numerically it performs as well as or better than well-known adaptive least-squares schemes.
Augmented Reality (AR) has emerged as a significant advancement in surgical procedures, offering a solution to the challenges posed by traditional neuronavigation methods. These conventional techniques often necessitate surgeons to split their focus between the surgical site and a separate monitor that displays guiding images. Over the years, many systems have been developed to register and track the hologram at the targeted locations, each employed its own evaluation technique. On the other hand, hologram displacement measurement is not a straightforward task because of various factors such as occlusion, Vengence-Accomodation Conflict, and unstable holograms in space. In this study, we explore and classify different techniques for assessing an AR-assisted neurosurgery system and propose a new technique to systematize the assessment procedure. Moreover, we conduct a deeper investigation to assess surgeon error in the pre- and intra-operative phases of the surgery based on the respective feedback given. We found that although the system can undergo registration and tracking errors, physical feedback can significantly reduce the error caused by hologram displacement. However, the lack of visual feedback on the hologram does not have a significant effect on the user 3D perception.
This work is concerned with the analysis of a space-time finite element discontinuous Galerkin method on polytopal meshes (XT-PolydG) for the numerical discretization of wave propagation in coupled poroelastic-elastic media. The mathematical model consists of the low-frequency Biot's equations in the poroelastic medium and the elastodynamics equation for the elastic one. To realize the coupling, suitable transmission conditions on the interface between the two domains are (weakly) embedded in the formulation. The proposed PolydG discretization in space is then coupled with a dG time integration scheme, resulting in a full space-time dG discretization. We present the stability analysis for both the continuous and the semidiscrete formulations, and we derive error estimates for the semidiscrete formulation in a suitable energy norm. The method is applied to a wide set of numerical test cases to verify the theoretical bounds. Examples of physical interest are also presented to investigate the capability of the proposed method in relevant geophysical scenarios.
We present novel Monte Carlo (MC) and multilevel Monte Carlo (MLMC) methods for determining the unbiased covariance of random variables using h-statistics. The advantage of this procedure lies in the unbiased construction of the estimator's mean square error in a closed form. This is in contrast to the conventional MC and MLMC covariance estimators, which are based on biased mean square errors defined solely by upper bounds, particularly within the MLMC. Finally, the numerical results of the algorithms are demonstrated by estimating the covariance of the stochastic response of a simple 1D stochastic elliptic PDE such as Poisson's model.
We propose a hybrid Finite Volume (FV) - Spectral Element Method (SEM) for modelling aeroacoustic phenomena based on the Lighthill's acoustic analogy. First the fluid solution is computed employing a FV method. Then, the sound source term is projected onto the acoustic grid and the inhomogeneous Lighthill's wave equation is solved employing the SEM. The novel projection method computes offline the intersections between the acoustic and the fluid grids in order to preserve the accuracy. The proposed intersection algorithm is shown to be robust, scalable and able to efficiently compute the geometric intersection of arbitrary polyhedral elements. We then analyse the properties of the projection error, showing that if the fluid grid is fine enough we are able to exploit the accuracy of the acoustic solver and we numerically assess the obtained theoretical estimates. Finally, we address two relevant aeroacoustic benchmarks, namely the corotating vortex pair and the noise induced by a laminar flow around a squared cylinder, to demonstrate in practice the effectiveness of the projection method when dealing with high order solvers. The flow computations are performed with OpenFOAM [46], an open-source finite volume library, while the inhomogeneous Lighthill's wave equation is solved with SPEED [31], an opensource spectral element library.
Data is a cornerstone for fine-tuning large language models, yet acquiring suitable data remains challenging. Challenges encompassed data scarcity, linguistic diversity, and domain-specific content. This paper presents lessons learned while crawling and refining data tailored for fine-tuning Vietnamese language models. Crafting such a dataset, while accounting for linguistic intricacies and striking a balance between inclusivity and accuracy, demands meticulous planning. Our paper presents a multidimensional strategy including leveraging existing datasets in the English language and developing customized data-crawling scripts with the assistance of generative AI tools. A fine-tuned LLM model for the Vietnamese language, which was produced using resultant datasets, demonstrated good performance while generating Vietnamese news articles from prompts. The study offers practical solutions and guidance for future fine-tuning models in languages like Vietnamese.
This paper presents the workspace optimization of one-translational two-rotational (1T2R) parallel manipulators using a dimensionally homogeneous constraint-embedded Jacobian. The mixed degrees of freedom of 1T2R parallel manipulators, which cause dimensional inconsistency, make it difficult to optimize their architectural parameters. To solve this problem, a point-based approach with a shifting property, selection matrix, and constraint-embedded inverse Jacobian is proposed. A simplified formulation is provided, eliminating the complex partial differentiation required in previous approaches. The dimensional homogeneity of the proposed method was analytically proven, and its validity was confirmed by comparing it with the conventional point-based method using a 3-PRS manipulator. Furthermore, the approach was applied to an asymmetric 2-RRS/RRRU manipulator with no parasitic motion. This mechanism has a T-shape combination of limbs with different kinematic parameters, making it challenging to derive a dimensionally homogeneous Jacobian using the conventional method. Finally, optimization was performed, and the results show that the proposed method is more efficient than the conventional approach. The efficiency and simplicity of the proposed method were verified using two distinct parallel manipulators.
Novel categories are commonly defined as those unobserved during training but present during testing. However, partially labelled training datasets can contain unlabelled training samples that belong to novel categories, meaning these can be present in training and testing. This research is the first to generalise between what we call observed-novel and unobserved-novel categories within a new learning policy called open-set learning with augmented category by exploiting unlabelled data or Open-LACU. After surveying existing learning policies, we introduce Open-LACU as a unified policy of positive and unlabelled learning, semi-supervised learning and open-set recognition. Subsequently, we develop the first Open-LACU model using an algorithmic training process of the relevant research fields. The proposed Open-LACU classifier achieves state-of-the-art and first-of-its-kind results.