亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Massive multiple-input multiple-output (MIMO) has gained widespread popularity in recent years due to its ability to increase data rates, improve signal quality, and provide better coverage in challenging environments. In this paper, we investigate the MIMO beam selection (MBS) problem, which is proven to be NP-hard and computationally intractable. To deal with this problem, quantum computing that can provide faster and more efficient solutions to large-scale combinatorial optimization is considered. MBS is formulated in a quadratic unbounded binary optimization form and solved with Coherent Ising Machine (CIM) physical machine. We compare the performance of our solution with two classic heuristics, simulated annealing and Tabu search. The results demonstrate an average performance improvement by a factor of 261.23 and 20.6, respectively, which shows that CIM-based solution performs significantly better in terms of selecting the optimal subset of beams. This work shows great promise for practical 5G operation and promotes the application of quantum computing in solving computationally hard problems in communication.

相關內容

Modeling and formally reasoning about distributed systems with faults is a challenging task. To address this problem, we propose the theory of Validating Labeled State transition and Message production systems (VLSMs). The theory of VLSMs provides a general approach to describing and verifying properties of distributed protocols whose executions are subject to faults, supporting a correct-by-construction system development methodology. The central focus of our investigation is equivocation, a mode of faulty behavior that we formally model, reason about, and then show how to detect from durable evidence that may be available locally to system components. Equivocating components exhibit behavior that is inconsistent with single-trace system executions, while also only interacting with other components by sending and receiving valid messages. Components of system are called validators for that system if their validity constraints validate that the messages they receive are producible by the system. Our main result shows that for systems of validators, the effect that Byzantine components can have on honest validators is precisely identical to the effect that equivocating components can have on non-equivocating validators. Therefore, for distributed systems of potentially faulty validators, replacing Byzantine components with equivocating components has no material analytical consequences, and forms the basis of a sound alternative foundation to Byzantine fault tolerance analysis. All of the results and examples in the paper have been formalised and checked in the Coq proof assistant.

To segment a signal into blocks to be analyzed, few-shot keyword spotting (KWS) systems often utilize a sliding window of fixed size. Because of the varying lengths of different keywords or their spoken instances, choosing the right window size is a problem: A window should be long enough to contain all necessary information needed to recognize a keyword but a longer window may contain irrelevant information such as multiple words or noise and thus makes it difficult to reliably detect on- and offsets of keywords. We propose TACos, a novel angular margin loss for deriving two-dimensional embeddings that retain temporal properties of the underlying speech signal. In experiments conducted on KWS-DailyTalk, a few-shot KWS dataset presented in this work, using these embeddings as templates for dynamic time warping is shown to outperform using other representations or a sliding window and that using time-reversed segments of the keywords during training improves the performance.

Diabetic Retinopathy (DR) is a prevalent illness associated with Diabetes which, if left untreated, can result in irreversible blindness. Deep Learning based systems are gradually being introduced as automated support for clinical diagnosis. Since healthcare has always been an extremely important domain demanding error-free performance, any adversaries could pose a big threat to the applicability of such systems. In this work, we use Universal Adversarial Perturbations (UAPs) to quantify the vulnerability of Medical Deep Neural Networks (DNNs) for detecting DR. To the best of our knowledge, this is the very first attempt that works on attacking complete fine-grained classification of DR images using various UAPs. Also, as a part of this work, we use UAPs to fine-tune the trained models to defend against adversarial samples. We experiment on several models and observe that the performance of such models towards unseen adversarial attacks gets boosted on average by $3.41$ Cohen-kappa value and maximum by $31.92$ Cohen-kappa value. The performance degradation on normal data upon ensembling the fine-tuned models was found to be statistically insignificant using t-test, highlighting the benefits of UAP-based adversarial fine-tuning.

Optimizing static risk-averse objectives in Markov decision processes is difficult because they do not admit standard dynamic programming equations common in Reinforcement Learning (RL) algorithms. Dynamic programming decompositions that augment the state space with discrete risk levels have recently gained popularity in the RL community. Prior work has shown that these decompositions are optimal when the risk level is discretized sufficiently. However, we show that these popular decompositions for Conditional-Value-at-Risk (CVaR) and Entropic-Value-at-Risk (EVaR) are inherently suboptimal regardless of the discretization level. In particular, we show that a saddle point property assumed to hold in prior literature may be violated. However, a decomposition does hold for Value-at-Risk and our proof demonstrates how this risk measure differs from CVaR and EVaR. Our findings are significant because risk-averse algorithms are used in high-stake environments, making their correctness much more critical.

Evolutionary multitasking (EMT) has been attracting much attention over the past years. It aims to handle multiple optimization tasks simultaneously within limited computing resources assisted by inter-task knowledge transfer techniques. Numerous multitask evolutionary algorithms (MTEAs) for solving multitask optimization (MTO) problems have been proposed in the EMT field, but there lacks a comprehensive software platform to help researchers evaluate MTEA performance on benchmark MTO problems as well as explore real-world applications. To address this issue, we introduce the first open-source optimization platform, named MTO-Platform (MToP), for EMT. It incorporates more than 30 MTEAs, more than 150 MTO problem cases with real-world applications, and more than 10 performance metrics. Moreover, for comparing MTEAs with traditional evolutionary algorithms, we modified more than 30 popular single-task evolutionary algorithms to be able to solve MTO problems in MToP. MToP is a user-friendly tool with a graphical user interface that makes it easy to analyze results, export data, and plot schematics. More importantly, MToP is extensible, allowing users to develop new algorithms and define new problems. The source code of MToP is available at //github.com/intLyc/MTO-Platform.

Audit logs containing system level events are frequently used for behavior modeling as they can provide detailed insight into cyber-threat occurrences. However, mapping low-level system events in audit logs to highlevel behaviors has been a major challenge in identifying host contextual behavior for the purpose of detecting potential cyber threats. Relying on domain expert knowledge may limit its practical implementation. This paper presents TapTree, an automated process-tree based technique to extract host behavior by compiling system events' semantic information. After extracting behaviors as system generated process trees, TapTree integrates event semantics as a representation of behaviors. To further reduce pattern matching workloads for the analyst, TapTree aggregates semantically equivalent patterns and optimizes representative behaviors. In our evaluation against a recent benchmark audit log dataset (DARPA OpTC), TapTree employs tree pattern queries and sequential pattern mining techniques to deduce the semantics of connected system events, achieving high accuracy for behavior abstraction and then Advanced Persistent Threat (APT) attack detection. Moreover, we illustrate how to update the baseline model gradually online, allowing it to adapt to new log patterns over time.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.

Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

北京阿比特科技有限公司