亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Amidst the wide popularity of imitation learning algorithms in robotics, their properties regarding hyperparameter sensitivity, ease of training, data efficiency, and performance have not been well-studied in high-precision industry-inspired environments. In this work, we demonstrate the limitations and benefits of prominent imitation learning approaches and analyze their capabilities regarding these properties. We evaluate each algorithm on a complex bimanual manipulation task involving an over-constrained dynamics system in a setting involving multiple contacts between the manipulated object and the environment. While we find that imitation learning is well suited to solve such complex tasks, not all algorithms are equal in terms of handling environmental and hyperparameter perturbations, training requirements, performance, and ease of use. We investigate the empirical influence of these key characteristics by employing a carefully designed experimental procedure and learning environment. Paper website: //bimanual-imitation.github.io/

相關內容

In public opinion studies, the relationships between opinions on different topics are likely to shift based on the characteristics of the respondents. Thus, understanding the complexities of public opinion requires methods that can account for the heterogeneity in responses across different groups. Multiple graphs are used to study how external factors-such as time spent online or generational differences-shape the joint dependence relationships between opinions on various topics. Specifically, we propose a class of multiple Ising models where a set of graphs across different groups are able to capture these variations and to model the heterogeneity induced in a set of binary variables by external factors. The proposed Bayesian methodology is based on a Markov Random Field prior for the multiple graph setting. Such prior enables the borrowing of strength across the different groups to encourage common edges when supported by the data. Sparse inducing spike-and-slab priors are employed on the parameters that measure graph similarities to learn which subgroups have a shared graph structure. Two Bayesian approaches are developed for the inference of multiple Ising models with a special focus on model selection: (i) a Fully Bayesian method for low-dimensional graphs based on conjugate priors specified with respect to the exact likelihood, and (ii) an Approximate Bayesian method based on a quasi-likelihood approach for high-dimensional graphs where the normalization constant required in the exact method is computationally intractable. These methods are employed for the analysis of data from two public opinion studies in US. The obtained results display a good trade-off between identifying significant edges (both shared and group-specific) and having sparse networks, all while quantifying the uncertainty of the graph structure and the graphs' similarity.

Recent work showed that retrieval based on embedding similarity (e.g., for retrieval-augmented generation) is vulnerable to poisoning: an adversary can craft malicious documents that are retrieved in response to broad classes of queries. We demonstrate that previous, HotFlip-based techniques produce documents that are very easy to detect using perplexity filtering. Even if generation is constrained to produce low-perplexity text, the resulting documents are recognized as unnatural by LLMs and can be automatically filtered from the retrieval corpus. We design, implement, and evaluate a new controlled generation technique that combines an adversarial objective (embedding similarity) with a "naturalness" objective based on soft scores computed using an open-source, surrogate LLM. The resulting adversarial documents (1) cannot be automatically detected using perplexity filtering and/or other LLMs, except at the cost of significant false positives in the retrieval corpus, yet (2) achieve similar poisoning efficacy to easily-detectable documents generated using HotFlip, and (3) are significantly more effective than prior methods for energy-guided generation, such as COLD.

The perturbation analysis of linear solvers applied to systems arising broadly in machine learning settings -- for instance, when using linear regression models -- establishes an important perspective when reframing these analyses through the lens of a data poisoning attack. By analyzing solvers' responses to such attacks, this work aims to contribute to the development of more robust linear solvers and provide insights into poisoning attacks on linear solvers. In particular, we investigate how the errors in the input data will affect the fitting error and accuracy of the solution from a linear system-solving algorithm under perturbations common in adversarial attacks. We propose data perturbation through two distinct knowledge levels, developing a poisoning optimization and studying two methods of perturbation: Label-guided Perturbation (LP) and Unconditioning Perturbation (UP). Existing works mainly focus on deriving the worst-case perturbation bound from a theoretical perspective, and the analysis is often limited to specific kinds of linear system solvers. Under the circumstance that the data is intentionally perturbed -- as is the case with data poisoning -- we seek to understand how different kinds of solvers react to these perturbations, identifying those algorithms most impacted by different types of adversarial attacks.

Stochastic optimal control (SOC) aims to direct the behavior of noisy systems and has widespread applications in science, engineering, and artificial intelligence. In particular, reward fine-tuning of diffusion and flow matching models and sampling from unnormalized methods can be recast as SOC problems. A recent work has introduced Adjoint Matching (Domingo-Enrich et al., 2024), a loss function for SOC problems that vastly outperforms existing loss functions in the reward fine-tuning setup. The goal of this work is to clarify the connections between all the existing (and some new) SOC loss functions. Namely, we show that SOC loss functions can be grouped into classes that share the same gradient in expectation, which means that their optimization landscape is the same; they only differ in their gradient variance. We perform simple SOC experiments to understand the strengths and weaknesses of different loss functions.

We study the use of Gaussian process emulators to approximate the parameter-to-observation map or the negative log-likelihood in Bayesian inverse problems. We prove error bounds on the Hellinger distance between the true posterior distribution and various approximations based on the Gaussian process emulator. Our analysis includes approximations based on the mean of the predictive process, as well as approximations based on the full Gaussian process emulator. Our results show that the Hellinger distance between the true posterior and its approximations can be bounded by moments of the error in the emulator. Numerical results confirm our theoretical findings.

Various kinds of uncertainty can occur in event logs, e.g., due to flawed recording, data quality issues, or the use of probabilistic models for activity recognition. Stochastically known event logs make these uncertainties transparent by encoding multiple possible realizations for events. However, the number of realizations encoded by a stochastically known log grows exponentially with its size, making exhaustive exploration infeasible even for moderately sized event logs. Thus, considering only the top-K most probable realizations has been proposed in the literature. In this paper, we implement an efficient algorithm to calculate a top-K realization ranking of an event log under event independence within O(Kn), where n is the number of uncertain events in the log. This algorithm is used to investigate the benefit of top-K rankings over top-1 interpretations of stochastically known event logs. Specifically, we analyze the usefulness of top-K rankings against different properties of the input data. We show that the benefit of a top-K ranking depends on the length of the input event log and the distribution of the event probabilities. The results highlight the potential of top-K rankings to enhance uncertainty-aware process mining techniques.

Intelligent transportation systems play a crucial role in modern traffic management and optimization, greatly improving traffic efficiency and safety. With the rapid development of generative artificial intelligence (Generative AI) technologies in the fields of image generation and natural language processing, generative AI has also played a crucial role in addressing key issues in intelligent transportation systems, such as data sparsity, difficulty in observing abnormal scenarios, and in modeling data uncertainty. In this review, we systematically investigate the relevant literature on generative AI techniques in addressing key issues in different types of tasks in intelligent transportation systems. First, we introduce the principles of different generative AI techniques, and their potential applications. Then, we classify tasks in intelligent transportation systems into four types: traffic perception, traffic prediction, traffic simulation, and traffic decision-making. We systematically illustrate how generative AI techniques addresses key issues in these four different types of tasks. Finally, we summarize the challenges faced in applying generative AI to intelligent transportation systems, and discuss future research directions based on different application scenarios.

Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

北京阿比特科技有限公司