亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Model checking has been proposed as a formal verification approach for analyzing computer-based and cyber-physical systems. The state space explosion problem is the main obstacle for applying this approach for sophisticated systems. Bisimulation minimization is a prominent method for reducing the number of states in a labeled transition system and is used to alleviate the challenges of the state space explosion problem. For systems with stochastic behaviors, probabilistic bisimulation is used to reduce a given model to its minimized equivalent one. In recent years, several techniques have been proposed to reduce the time complexity of the iterative methods for computing probabilistic bisimulation of stochastic systems with nondeterministic behaviors. In this paper, we propose several techniques to accelerate iterative processes to partition the state space of a given probabilistic model to its bisimulation classes. The first technique applies two ordering heuristics for choosing splitter blocks. The second technique uses hash tables to reduce the running time and the average time complexity of the standard iterative method. The proposed approaches are implemented and run on several conventional case studies and reduce the running time by one order of magnitude on average.

相關內容

Distribution shifts are all too common in real-world applications of machine learning. Domain adaptation (DA) aims to address this by providing various frameworks for adapting models to the deployment data without using labels. However, the domain shift scenario raises a second more subtle challenge: the difficulty of performing hyperparameter optimisation (HPO) for these adaptation algorithms without access to a labelled validation set. The unclear validation protocol for DA has led to bad practices in the literature, such as performing HPO using the target test labels when, in real-world scenarios, they are not available. This has resulted in over-optimism about DA research progress compared to reality. In this paper, we analyse the state of DA when using good evaluation practice, by benchmarking a suite of candidate validation criteria and using them to assess popular adaptation algorithms. We show that there are challenges across all three branches of domain adaptation methodology including Unsupervised Domain Adaptation (UDA), Source-Free Domain Adaptation (SFDA), and Test Time Adaptation (TTA). While the results show that realistically achievable performance is often worse than expected, they also show that using proper validation splits is beneficial, as well as showing that some previously unexplored validation metrics provide the best options to date. Altogether, our improved practices covering data, training, validation and hyperparameter optimisation form a new rigorous pipeline to improve benchmarking, and hence research progress, within this important field going forward.

The widespread proliferation of deep learning applications has triggered the need to accelerate them directly in hardware. General Matrix Multiplication (GEMM) kernels are elemental deep-learning constructs and they inherently map onto Systolic Arrays (SAs). SAs are regular structures that are well-suited for accelerating matrix multiplications. Typical SAs use a pipelined array of Processing Elements (PEs), which communicate with local connections and pre-orchestrated data movements. In this work, we show that the physical layout of SAs should be asymmetric to minimize wirelength and improve energy efficiency. The floorplan of the SA adjusts better to the asymmetric widths of the horizontal and vertical data buses and their switching activity profiles. It is demonstrated that such physically asymmetric SAs reduce interconnect power by 9.1% when executing state-of-the-art Convolutional Neural Network (CNN) layers, as compared to SAs of the same size but with a square (i.e., symmetric) layout. The savings in interconnect power translate, in turn, to 2.1% overall power savings.

The goal of cryptocurrencies is decentralization. In principle, all currencies have equal status. Unlike traditional stock markets, there is no default currency of denomination (fiat), thus the trading pairs can be set freely. However, it is impractical to set up a trading market between every two currencies. In order to control management costs and ensure sufficient liquidity, we must give priority to covering those large-volume trading pairs and ensure that all coins are reachable. We note that this is an optimization problem. Its particularity lies in: 1) the trading volume between most (>99.5%) possible trading pairs cannot be directly observed. 2) It satisfies the connectivity constraint, that is, all currencies are guaranteed to be tradable. To solve this problem, we use a two-stage process: 1) Fill in missing values based on a regularized, truncated eigenvalue decomposition, where the regularization term is used to control what extent missing values should be limited to zero. 2) Search for the optimal trading pairs, based on a branch and bound process, with heuristic search and pruning strategies. The experimental results show that: 1) If the number of denominated coins is not limited, we will get a more decentralized trading pair settings, which advocates the establishment of trading pairs directly between large currency pairs. 2) There is a certain room for optimization in all exchanges. The setting of inappropriate trading pairs is mainly caused by subjectively setting small coins to quote, or failing to track emerging big coins in time. 3) Too few trading pairs will lead to low coverage; too many trading pairs will need to be adjusted with markets frequently. Exchanges should consider striking an appropriate balance between them.

Reinforcement learning policy evaluation problems are often modeled as finite or discounted/averaged infinite-horizon MDPs. In this paper, we study undiscounted off-policy policy evaluation for absorbing MDPs. Given the dataset consisting of the i.i.d episodes with a given truncation level, we propose a so-called MWLA algorithm to directly estimate the expected return via the importance ratio of the state-action occupancy measure. The Mean Square Error (MSE) bound for the MWLA method is investigated and the dependence of statistical errors on the data size and the truncation level are analyzed. With an episodic taxi environment, computational experiments illustrate the performance of the MWLA algorithm.

Most successes in autonomous robotic assembly have been restricted to single target or category. We propose to investigate general part assembly, the task of creating novel target assemblies with unseen part shapes. As a fundamental step to a general part assembly system, we tackle the task of determining the precise poses of the parts in the target assembly, which we we term ``rearrangement planning''. We present General Part Assembly Transformer (GPAT), a transformer-based model architecture that accurately predicts part poses by inferring how each part shape corresponds to the target shape. Our experiments on both 3D CAD models and real-world scans demonstrate GPAT's generalization abilities to novel and diverse target and part shapes.

Benchmarks are used for testing new optimization algorithms and their variants to evaluate their performance. Most existing benchmarks are smooth functions. This chapter introduces ten new benchmarks with different properties, including noise, discontinuity, parameter estimation and unknown paths.

Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.

Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

Text classification is an important and classical problem in natural language processing. There have been a number of studies that applied convolutional neural networks (convolution on regular grid, e.g., sequence) to classification. However, only a limited number of studies have explored the more flexible graph convolutional neural networks (convolution on non-grid, e.g., arbitrary graph) for the task. In this work, we propose to use graph convolutional networks for text classification. We build a single text graph for a corpus based on word co-occurrence and document word relations, then learn a Text Graph Convolutional Network (Text GCN) for the corpus. Our Text GCN is initialized with one-hot representation for word and document, it then jointly learns the embeddings for both words and documents, as supervised by the known class labels for documents. Our experimental results on multiple benchmark datasets demonstrate that a vanilla Text GCN without any external word embeddings or knowledge outperforms state-of-the-art methods for text classification. On the other hand, Text GCN also learns predictive word and document embeddings. In addition, experimental results show that the improvement of Text GCN over state-of-the-art comparison methods become more prominent as we lower the percentage of training data, suggesting the robustness of Text GCN to less training data in text classification.

北京阿比特科技有限公司