We use a combination of unsupervised clustering and sparsity-promoting inference algorithms to learn locally dominant force balances that explain macroscopic pattern formation in self-organized active particle systems. The self-organized emergence of macroscopic patterns from microscopic interactions between self-propelled particles can be widely observed nature. Although hydrodynamic theories help us better understand the physical basis of this phenomenon, identifying a sufficient set of local interactions that shape, regulate, and sustain self-organized structures in active particle systems remains challenging. We investigate a classic hydrodynamic model of self-propelled particles that produces a wide variety of patterns, like asters and moving density bands. Our data-driven analysis shows that propagating bands are formed by local alignment interactions driven by density gradients, while steady-state asters are shaped by a mechanism of splay-induced negative compressibility arising from strong particle interactions. Our method also reveals analogous physical principles of pattern formation in a system where the speed of the particle is influenced by local density. This demonstrates the ability of our method to reveal physical commonalities across models. The physical mechanisms inferred from the data are in excellent agreement with analytical scaling arguments and experimental observations.
Parametric mathematical models such as parameterizations of partial differential equations with random coefficients have received a lot of attention within the field of uncertainty quantification. The model uncertainties are often represented via a series expansion in terms of the parametric variables. In practice, this series expansion needs to be truncated to a finite number of terms, introducing a dimension truncation error to the numerical simulation of a parametric mathematical model. There have been several studies of the dimension truncation error corresponding to different models of the input random field in recent years, but many of these analyses have been carried out within the context of numerical integration. In this paper, we study the $L^2$ dimension truncation error of the parametric model problem. Estimates of this kind arise in the assessment of the dimension truncation error for function approximation in high dimensions. In addition, we show that the dimension truncation error rate is invariant with respect to certain transformations of the parametric variables. Numerical results are presented which showcase the sharpness of the theoretical results.
Assessing and comparing the security level of different voting systems is non-trivial as the technical means provided for and societal assumptions made about various systems differ significantly. However, trust assumptions concerning the involved parties are present for all voting systems and can be used as a basis for comparison. This paper discusses eight concrete voting systems with different properties, 12 types of parties involved, and seven general security goals set for voting. The emerging trust relations are assessed for their criticality, and the result is used for comparison of the considered systems.
We consider generalized operator eigenvalue problems in variational form with random perturbations in the bilinear forms. This setting is motivated by variational forms of partial differential equations with random input data. The considered eigenpairs can be of higher but finite multiplicity. We investigate stochastic quantities of interest of the eigenpairs and discuss why, for multiplicity greater than 1, only the stochastic properties of the eigenspaces are meaningful, but not the ones of individual eigenpairs. To that end, we characterize the Fr\'echet derivatives of the eigenpairs with respect to the perturbation and provide a new linear characterization for eigenpairs of higher multiplicity. As a side result, we prove local analyticity of the eigenspaces. Based on the Fr\'echet derivatives of the eigenpairs we discuss a meaningful Monte Carlo sampling strategy for multiple eigenvalues and develop an uncertainty quantification perturbation approach. Numerical examples are presented to illustrate the theoretical results.
The angular measure on the unit sphere characterizes the first-order dependence structure of the components of a random vector in extreme regions and is defined in terms of standardized margins. Its statistical recovery is an important step in learning problems involving observations far away from the center. In the common situation that the components of the vector have different distributions, the rank transformation offers a convenient and robust way of standardizing data in order to build an empirical version of the angular measure based on the most extreme observations. We provide a functional asymptotic expansion for the empirical angular measure in the bivariate case based on the theory of weak convergence in the space of bounded functions. From the expansion, not only can the known asymptotic distribution of the empirical angular measure be recovered, it also enables to find expansions and weak limits for other statistics based on the associated empirical process or its quantile version.
We consider the problem of sequential change detection, where the goal is to design a scheme for detecting any changes in a parameter or functional $\theta$ of the data stream distribution that has small detection delay, but guarantees control on the frequency of false alarms in the absence of changes. In this paper, we describe a simple reduction from sequential change detection to sequential estimation using confidence sequences: we begin a new $(1-\alpha)$-confidence sequence at each time step, and proclaim a change when the intersection of all active confidence sequences becomes empty. We prove that the average run length is at least $1/\alpha$, resulting in a change detection scheme with minimal structural assumptions~(thus allowing for possibly dependent observations, and nonparametric distribution classes), but strong guarantees. Our approach bears an interesting parallel with the reduction from change detection to sequential testing of Lorden (1971) and the e-detector of Shin et al. (2022).
A general a posteriori error analysis applies to five lowest-order finite element methods for two fourth-order semi-linear problems with trilinear non-linearity and a general source. A quasi-optimal smoother extends the source term to the discrete trial space, and more importantly, modifies the trilinear term in the stream-function vorticity formulation of the incompressible 2D Navier-Stokes and the von K\'{a}rm\'{a}n equations. This enables the first efficient and reliable a posteriori error estimates for the 2D Navier-Stokes equations in the stream-function vorticity formulation for Morley, two discontinuous Galerkin, $C^0$ interior penalty, and WOPSIP discretizations with piecewise quadratic polynomials.
The notion that algorithmic systems should be "transparent" and "explainable" is common in the many statements of consensus principles developed by governments, companies, and advocacy organizations. But what exactly do policy and legal actors want from these technical concepts, and how do their desiderata compare with the explainability techniques developed in the machine learning literature? In hopes of better connecting the policy and technical communities, we provide case studies illustrating five ways in which algorithmic transparency and explainability have been used in policy settings: specific requirements for explanations; in nonbinding guidelines for internal governance of algorithms; in regulations applicable to highly regulated settings; in guidelines meant to increase the utility of legal liability for algorithms; and broad requirements for model and data transparency. The case studies span a spectrum from precise requirements for specific types of explanations to nonspecific requirements focused on broader notions of transparency, illustrating the diverse needs, constraints, and capacities of various policy actors and contexts. Drawing on these case studies, we discuss promising ways in which transparency and explanation could be used in policy, as well as common factors limiting policymakers' use of algorithmic explainability. We conclude with recommendations for researchers and policymakers.
Existing deepfake speech detection systems lack generalizability to unseen attacks (i.e., samples generated by generative algorithms not seen during training). Recent studies have explored the use of universal speech representations to tackle this issue and have obtained inspiring results. These works, however, have focused on innovating downstream classifiers while leaving the representation itself untouched. In this study, we argue that characterizing the long-term temporal dynamics of these representations is crucial for generalizability and propose a new method to assess representation dynamics. Indeed, we show that different generative models generate similar representation dynamics patterns with our proposed method. Experiments on the ASVspoof 2019 and 2021 datasets validate the benefits of the proposed method to detect deepfakes from methods unseen during training, significantly improving on several benchmark methods.
Solving multiphysics-based inverse problems for geological carbon storage monitoring can be challenging when multimodal time-lapse data are expensive to collect and costly to simulate numerically. We overcome these challenges by combining computationally cheap learned surrogates with learned constraints. Not only does this combination lead to vastly improved inversions for the important fluid-flow property, permeability, it also provides a natural platform for inverting multimodal data including well measurements and active-source time-lapse seismic data. By adding a learned constraint, we arrive at a computationally feasible inversion approach that remains accurate. This is accomplished by including a trained deep neural network, known as a normalizing flow, which forces the model iterates to remain in-distribution, thereby safeguarding the accuracy of trained Fourier neural operators that act as surrogates for the computationally expensive multiphase flow simulations involving partial differential equation solves. By means of carefully selected experiments, centered around the problem of geological carbon storage, we demonstrate the efficacy of the proposed constrained optimization method on two different data modalities, namely time-lapse well and time-lapse seismic data. While permeability inversions from both these two modalities have their pluses and minuses, their joint inversion benefits from either, yielding valuable superior permeability inversions and CO2 plume predictions near, and far away, from the monitoring wells.
Transition amplitudes and transition probabilities are relevant to many areas of physics simulation, including the calculation of response properties and correlation functions. These quantities can also be related to solving linear systems of equations. Here we present three related algorithms for calculating transition probabilities. First, we extend a previously published short-depth algorithm, allowing for the two input states to be non-orthogonal. Building on this first procedure, we then derive a higher-depth algorithm based on Trotterization and Richardson extrapolation that requires fewer circuit evaluations. Third, we introduce a tunable algorithm that allows for trading off circuit depth and measurement complexity, yielding an algorithm that can be tailored to specific hardware characteristics. Finally, we implement proof-of-principle numerics for models in physics and chemistry and for a subroutine in variational quantum linear solving (VQLS). The primary benefits of our approaches are that (a) arbitrary non-orthogonal states may now be used with small increases in quantum resources, (b) we (like another recently proposed method) entirely avoid subroutines such as the Hadamard test that may require three-qubit gates to be decomposed, and (c) in some cases fewer quantum circuit evaluations are required as compared to the previous state-of-the-art in NISQ algorithms for transition probabilities.