We consider generalized operator eigenvalue problems in variational form with random perturbations in the bilinear forms. This setting is motivated by variational forms of partial differential equations with random input data. The considered eigenpairs can be of higher but finite multiplicity. We investigate stochastic quantities of interest of the eigenpairs and discuss why, for multiplicity greater than 1, only the stochastic properties of the eigenspaces are meaningful, but not the ones of individual eigenpairs. To that end, we characterize the Fr\'echet derivatives of the eigenpairs with respect to the perturbation and provide a new linear characterization for eigenpairs of higher multiplicity. As a side result, we prove local analyticity of the eigenspaces. Based on the Fr\'echet derivatives of the eigenpairs we discuss a meaningful Monte Carlo sampling strategy for multiple eigenvalues and develop an uncertainty quantification perturbation approach. Numerical examples are presented to illustrate the theoretical results.
We consider the estimation of the cumulative hazard function, and equivalently the distribution function, with censored data under a setup that preserves the privacy of the survival database. This is done through a $\alpha$-locally differentially private mechanism for the failure indicators and by proposing a non-parametric kernel estimator for the cumulative hazard function that remains consistent under the privatization. Under mild conditions, we also prove lowers bounds for the minimax rates of convergence and show that estimator is minimax optimal under a well-chosen bandwidth.
We propose a new method for the construction of layer-adapted meshes for singularly perturbed differential equations (SPDEs), based on mesh partial differential equations (MPDEs) that incorporate \emph{a posteriori} solution information. There are numerous studies on the development of parameter robust numerical methods for SPDEs that depend on the layer-adapted mesh of Bakhvalov. In~\citep{HiMa2021}, a novel MPDE-based approach for constructing a generalisation of these meshes was proposed. Like with most layer-adapted mesh methods, the algorithms in that article depended on detailed derivations of \emph{a priori} bounds on the SPDE's solution and its derivatives. In this work we extend that approach so that it instead uses \emph{a posteriori} computed estimates of the solution. We present detailed algorithms for the efficient implementation of the method, and numerical results for the robust solution of two-parameter reaction-convection-diffusion problems, in one and two dimensions. We also provide full FEniCS code for a one-dimensional example.
We propose a new variable selection procedure for a functional linear model with multiple scalar responses and multiple functional predictors. This method is based on basis expansions of the involved functional predictors and coefficients that lead to a multivariate linear regression model. Then a criterion by means of which the variable selection problem reduces to that of estimating a suitable set is introduced. Estimation of this set is achieved by using appropriate penalizations of estimates of this criterion, so leading to our proposal. A simulation study that permits to investigate the effectiveness of the proposed approach and to compare it with existing methods is given.
A Petrov-Galerkin finite element method is constructed for a singularly perturbed elliptic problem in two space dimensions. The solution contains a regular boundary layer and two characteristic boundary layers. Exponential splines are used as test functions in one coordinate direction and are combined with bilinear trial functions defined on a Shishkin mesh. The resulting numerical method is shown to be a stable parameter-uniform numerical method that achieves a higher order of convergence compared to upwinding on the same mesh.
A new numerical domain decomposition method is proposed for solving elliptic equations on compact Riemannian manifolds. The advantage of this method is to avoid global triangulations or grids on manifolds. Our method is numerically tested on some $4$-dimensional manifolds such as the unit sphere $S^{4}$, the complex projective space $\mathbb{CP}^{2}$ and the product manifold $S^{2} \times S^{2}$.
Finding functions, particularly permutations, with good differential properties has received a lot of attention due to their possible applications. For instance, in combinatorial design theory, a correspondence of perfect $c$-nonlinear functions and difference sets in some quasigroups was recently shown [1]. Additionally, in a recent manuscript by Pal and Stanica [20], a very interesting connection between the $c$-differential uniformity and boomerang uniformity when $c=-1$ was pointed out, showing that that they are the same for an odd APN permutations. This makes the construction of functions with low $c$-differential uniformity an intriguing problem. We investigate the $c$-differential uniformity of some classes of permutation polynomials. As a result, we add four more classes of permutation polynomials to the family of functions that only contains a few (non-trivial) perfect $c$-nonlinear functions over finite fields of even characteristic. Moreover, we include a class of permutation polynomials with low $c$-differential uniformity over the field of characteristic~$3$. As a byproduct, our proofs shows the permutation property of these classes. To solve the involved equations over finite fields, we use various techniques, in particular, we find explicitly many Walsh transform coefficients and Weil sums that may be of an independent interest.
We propose and analyze an extended Fourier pseudospectral (eFP) method for the spatial discretization of the Gross-Pitaevskii equation (GPE) with low regularity potential by treating the potential in an extended window for its discrete Fourier transform. The proposed eFP method maintains optimal convergence rates with respect to the regularity of the exact solution even if the potential is of low regularity and enjoys similar computational cost as the standard Fourier pseudospectral method, and thus it is both efficient and accurate. Furthermore, similar to the Fourier spectral/pseudospectral methods, the eFP method can be easily coupled with different popular temporal integrators including finite difference methods, time-splitting methods and exponential-type integrators. Numerical results are presented to validate our optimal error estimates and to demonstrate that they are sharp as well as to show its efficiency in practical computations.
Common policy gradient methods rely on the maximization of a sequence of surrogate functions. In recent years, many such surrogate functions have been proposed, most without strong theoretical guarantees, leading to algorithms such as TRPO, PPO or MPO. Rather than design yet another surrogate function, we instead propose a general framework (FMA-PG) based on functional mirror ascent that gives rise to an entire family of surrogate functions. We construct surrogate functions that enable policy improvement guarantees, a property not shared by most existing surrogate functions. Crucially, these guarantees hold regardless of the choice of policy parameterization. Moreover, a particular instantiation of FMA-PG recovers important implementation heuristics (e.g., using forward vs reverse KL divergence) resulting in a variant of TRPO with additional desirable properties. Via experiments on simple bandit problems, we evaluate the algorithms instantiated by FMA-PG. The proposed framework also suggests an improved variant of PPO, whose robustness and efficiency we empirically demonstrate on the MuJoCo suite.
Data-driven modeling is useful for reconstructing nonlinear dynamical systems when the underlying process is unknown or too expensive to compute. Having reliable uncertainty assessment of the forecast enables tools to be deployed to predict new scenarios unobserved before. In this work, we first extend parallel partial Gaussian processes for predicting the vector-valued transition function that links the observations between the current and next time points, and quantify the uncertainty of predictions by posterior sampling. Second, we show the equivalence between the dynamic mode decomposition and the maximum likelihood estimator of the linear mapping matrix in the linear state space model. The connection provides a {probabilistic generative} model of dynamic mode decomposition and thus, uncertainty of predictions can be obtained. Furthermore, we draw close connections between different data-driven models for approximating nonlinear dynamics, through a unified view of generative models. We study two numerical examples, where the inputs of the dynamics are assumed to be known in the first example and the inputs are unknown in the second example. The examples indicate that uncertainty of forecast can be properly quantified, whereas model or input misspecification can degrade the accuracy of uncertainty quantification.
This contribution introduces a model order reduction approach for an advection-reaction problem with a parametrized reaction function. The underlying discretization uses an ultraweak formulation with an $L^2$-like trial space and an 'optimal' test space as introduced by Demkowicz et al. This ensures the stability of the discretization and in addition allows for a symmetric reformulation of the problem in terms of a dual solution which can also be interpreted as the normal equations of an adjoint least-squares problem. Classic model order reduction techniques can then be applied to the space of dual solutions which also immediately gives a reduced primal space. We show that the necessary computations do not require the reconstruction of any primal solutions and can instead be performed entirely on the space of dual solutions. We prove exponential convergence of the Kolmogorov $N$-width and show that a greedy algorithm produces quasi-optimal approximation spaces for both the primal and the dual solution space. Numerical experiments based on the benchmark problem of a catalytic filter confirm the applicability of the proposed method.