亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the estimation of the cumulative hazard function, and equivalently the distribution function, with censored data under a setup that preserves the privacy of the survival database. This is done through a $\alpha$-locally differentially private mechanism for the failure indicators and by proposing a non-parametric kernel estimator for the cumulative hazard function that remains consistent under the privatization. Under mild conditions, we also prove lowers bounds for the minimax rates of convergence and show that estimator is minimax optimal under a well-chosen bandwidth.

相關內容

The Kullback-Leibler (KL) divergence is frequently used in data science. For discrete distributions on large state spaces, approximations of probability vectors may result in a few small negative entries, rendering the KL divergence undefined. We address this problem by introducing a parameterized family of substitute divergence measures, the shifted KL (sKL) divergence measures. Our approach is generic and does not increase the computational overhead. We show that the sKL divergence shares important theoretical properties with the KL divergence and discuss how its shift parameters should be chosen. If Gaussian noise is added to a probability vector, we prove that the average sKL divergence converges to the KL divergence for small enough noise. We also show that our method solves the problem of negative entries in an application from computational oncology, the optimization of Mutual Hazard Networks for cancer progression using tensor-train approximations.

Categorization is one of the basic tasks in machine learning and data analysis. Building on formal concept analysis (FCA), the starting point of the present work is that different ways to categorize a given set of objects exist, which depend on the choice of the sets of features used to classify them, and different such sets of features may yield better or worse categorizations, relative to the task at hand. In their turn, the (a priori) choice of a particular set of features over another might be subjective and express a certain epistemic stance (e.g. interests, relevance, preferences) of an agent or a group of agents, namely, their interrogative agenda. In the present paper, we represent interrogative agendas as sets of features, and explore and compare different ways to categorize objects w.r.t. different sets of features (agendas). We first develop a simple unsupervised FCA-based algorithm for outlier detection which uses categorizations arising from different agendas. We then present a supervised meta-learning algorithm to learn suitable (fuzzy) agendas for categorization as sets of features with different weights or masses. We combine this meta-learning algorithm with the unsupervised outlier detection algorithm to obtain a supervised outlier detection algorithm. We show that these algorithms perform at par with commonly used algorithms for outlier detection on commonly used datasets in outlier detection. These algorithms provide both local and global explanations of their results.

Infinitary and cyclic proof systems are proof systems for logical formulas with fixed-point operators or inductive definitions. A cyclic proof system is a restriction of the corresponding infinitary proof system. Hence, these proof systems are generally not the same, as in the cyclic system may be weaker than the infinitary system. For several logics, the infinitary proof systems are shown to be cut-free complete. However, cyclic proof systems are characterized with many unknown problems on the (cut-free) completeness or the cut-elimination property. In this study, we show that the provability of infinitary and cyclic proof systems are the same for some propositional logics with fixed-point operators or inductive definitions and that the cyclic proof systems are cut-free complete.

We propose, analyze, and test new iterative solvers for large-scale systems of linear algebraic equations arising from the finite element discretization of reduced optimality systems defining the finite element approximations to the solution of elliptic tracking-type distributed optimal control problems with both the standard $L_2$ and the more general energy regularizations. If we aim at an approximation of the given desired state $y_d$ by the computed finite element state $y_h$ that asymptotically differs from $y_d$ in the order of the best $L_2$ approximation under acceptable costs for the control, then the optimal choice of the regularization parameter $\varrho$ is linked to the mesh-size $h$ by the relations $\varrho=h^4$ and $\varrho=h^2$ for the $L_2$ and the energy regularization, respectively. For this setting, we can construct efficient parallel iterative solvers for the reduced finite element optimality systems. These results can be generalized to variable regularization parameters adapted to the local behavior of the mesh-size that can heavily change in case of adaptive mesh refinement. Similar results can be obtained for the space-time finite element discretization of the corresponding parabolic and hyperbolic optimal control problems.

Object data analysis is concerned with statistical methodology for datasets whose elements reside in an arbitrary, unspecified metric space. In this work we propose the object shape, a novel measure of shape/symmetry for object data. The object shape is easy to compute and interpret, owing to its intuitive interpretation as interpolation between two extreme forms of symmetry. As one major part of this work, we apply object shape in various metric spaces and show that it manages to unify several pre-existing, classical forms of symmetry. We also propose a new visualization tool called the peeling plot, which allows using the object shape for outlier detection and principal component analysis of object data.

This work puts forth low-complexity Riemannian subspace descent algorithms for the minimization of functions over the symmetric positive definite (SPD) manifold. Different from the existing Riemannian gradient descent variants, the proposed approach utilizes carefully chosen subspaces that allow the update to be written as a product of the Cholesky factor of the iterate and a sparse matrix. The resulting updates avoid the costly matrix operations like matrix exponentiation and dense matrix multiplication, which are generally required in almost all other Riemannian optimization algorithms on SPD manifold. We further identify a broad class of functions, arising in diverse applications, such as kernel matrix learning, covariance estimation of Gaussian distributions, maximum likelihood parameter estimation of elliptically contoured distributions, and parameter estimation in Gaussian mixture model problems, over which the Riemannian gradients can be calculated efficiently. The proposed uni-directional and multi-directional Riemannian subspace descent variants incur per-iteration complexities of $O(n)$ and $O(n^2)$ respectively, as compared to the $O(n^3)$ or higher complexity incurred by all existing Riemannian gradient descent variants. The superior runtime and low per-iteration complexity of the proposed algorithms is also demonstrated via numerical tests on large-scale covariance estimation and matrix square root problems. MATLAB code implementation is publicly available on GitHub : //github.com/yogeshd-iitk/subspace_descent_over_SPD_manifold

Block majorization-minimization (BMM) is a simple iterative algorithm for nonconvex optimization that sequentially minimizes a majorizing surrogate of the objective function in each block coordinate while the other block coordinates are held fixed. We consider a family of BMM algorithms for minimizing smooth nonconvex objectives, where each parameter block is constrained within a subset of a Riemannian manifold. We establish that this algorithm converges asymptotically to the set of stationary points, and attains an $\epsilon$-stationary point within $\widetilde{O}(\epsilon^{-2})$ iterations. In particular, the assumptions for our complexity results are completely Euclidean when the underlying manifold is a product of Euclidean or Stiefel manifolds, although our analysis makes explicit use of the Riemannian geometry. Our general analysis applies to a wide range of algorithms with Riemannian constraints: Riemannian MM, block projected gradient descent, optimistic likelihood estimation, geodesically constrained subspace tracking, robust PCA, and Riemannian CP-dictionary-learning. We experimentally validate that our algorithm converges faster than standard Euclidean algorithms applied to the Riemannian setting.

Spatial data can come in a variety of different forms, but two of the most common generating models for such observations are random fields and point processes. Whilst it is known that spectral analysis can unify these two different data forms, specific methodology for the related estimation is yet to be developed. In this paper, we solve this problem by extending multitaper estimation, to estimate the spectral density matrix function for multivariate spatial data, where processes can be any combination of either point processes or random fields. We discuss finite sample and asymptotic theory for the proposed estimators, as well as specific details on the implementation, including how to perform estimation on non-rectangular domains and the correct implementation of multitapering for processes sampled in different ways, e.g. continuously vs on a regular grid.

Recently defined expectile regions capture the idea of centrality with respect to a multivariate distribution, but fail to describe the tail behavior while it is not at all clear what should be understood by a tail of a multivariate distribution. Therefore, cone expectile sets are introduced which take into account a vector preorder for the multi-dimensional data points. This provides a way of describing and clustering a multivariate distribution/data cloud with respect to an order relation. Fundamental properties of cone expectiles including dual representations of both expectile regions and cone expectile sets are established. It is shown that set-valued sublinear risk measures can be constructed from cone expectile sets in the same way as in the univariate case. Inverse functions of cone expectiles are defined which should be considered as rank functions rather than depth functions. Finally, expectile orders for random vectors are introduced and characterized via expectile rank functions.

We use Stein characterisations to derive new moment-type estimators for the parameters of several multivariate distributions in the i.i.d. case; we also derive the asymptotic properties of these estimators. Our examples include the multivariate truncated normal distribution and several spherical distributions. The estimators are explicit and therefore provide an interesting alternative to the maximum-likelihood estimator. The quality of these estimators is assessed through competitive simulation studies in which we compare their behaviour to the performance of other estimators available in the literature.

北京阿比特科技有限公司