Quantification of behavior is critical in applications ranging from neuroscience, veterinary medicine and animal conservation efforts. A common key step for behavioral analysis is first extracting relevant keypoints on animals, known as pose estimation. However, reliable inference of poses currently requires domain knowledge and manual labeling effort to build supervised models. We present a series of technical innovations that enable a new method, collectively called SuperAnimal, to develop unified foundation models that can be used on over 45 species, without additional human labels. Concretely, we introduce a method to unify the keypoint space across differently labeled datasets (via our generalized data converter) and for training these diverse datasets in a manner such that they don't catastrophically forget keypoints given the unbalanced inputs (via our keypoint gradient masking and memory replay approaches). These models show excellent performance across six pose benchmarks. Then, to ensure maximal usability for end-users, we demonstrate how to fine-tune the models on differently labeled data and provide tooling for unsupervised video adaptation to boost performance and decrease jitter across frames. If the models are fine-tuned, we show SuperAnimal models are 10-100$\times$ more data efficient than prior transfer-learning-based approaches. We illustrate the utility of our models in behavioral classification in mice and gait analysis in horses. Collectively, this presents a data-efficient solution for animal pose estimation.
Effect modification occurs when the impact of the treatment on an outcome varies based on the levels of other covariates known as effect modifiers. Modeling of these effect differences is important for etiological goals and for purposes of optimizing treatment. Structural nested mean models (SNMMs) are useful causal models for estimating the potentially heterogeneous effect of a time-varying exposure on the mean of an outcome in the presence of time-varying confounding. A data-driven approach for selecting the effect modifiers of an exposure may be necessary if these effect modifiers are a priori unknown and need to be identified. Although variable selection techniques are available in the context of estimating conditional average treatment effects using marginal structural models, or in the context of estimating optimal dynamic treatment regimens, all of these methods consider an outcome measured at a single point in time. In the context of an SNMM for repeated outcomes, we propose a doubly robust penalized G-estimator for the causal effect of a time-varying exposure with a simultaneous selection of effect modifiers and use this estimator to analyze the effect modification in a study of hemodiafiltration. We prove the oracle property of our estimator, and conduct a simulation study for evaluation of its performance in finite samples and for verification of its double-robustness property. Our work is motivated by and applied to the study of hemodiafiltration for treating patients with end-stage renal disease at the Centre Hospitalier de l'Universit\'e de Montr\'eal. We apply the proposed method to investigate the effect heterogeneity of dialysis facility on the repeated session-specific hemodiafiltration outcomes.
Intracranial aneurysms are the leading cause of stroke. One of the established treatment approaches is the embolization induced by coil insertion. However, the prediction of treatment and subsequent changed flow characteristics in the aneurysm, is still an open problem. In this work, we present an approach based on patient specific geometry and parameters including a coil representation as inhomogeneous porous medium. The model consists of the volume-averaged Navier-Stokes equations including the non-Newtonian blood rheology. We solve these equations using a problem-adapted lattice Boltzmann method and present a comparison between fully-resolved and volume-averaged simulations. The results indicate the validity of the model. Overall, this workflow allows for patient specific assessment of the flow due to potential treatment.
Analyzing longitudinal data in health studies is challenging due to sparse and error-prone measurements, strong within-individual correlation, missing data and various trajectory shapes. While mixed-effect models (MM) effectively address these challenges, they remain parametric models and may incur computational costs. In contrast, Functional Principal Component Analysis (FPCA) is a non-parametric approach developed for regular and dense functional data that flexibly describes temporal trajectories at a lower computational cost. This paper presents an empirical simulation study evaluating the behaviour of FPCA with sparse and error-prone repeated measures and its robustness under different missing data schemes in comparison with MM. The results show that FPCA is well-suited in the presence of missing at random data caused by dropout, except in scenarios involving most frequent and systematic dropout. Like MM, FPCA fails under missing not at random mechanism. The FPCA was applied to describe the trajectories of four cognitive functions before clinical dementia and contrast them with those of matched controls in a case-control study nested in a population-based aging cohort. The average cognitive declines of future dementia cases showed a sudden divergence from those of their matched controls with a sharp acceleration 5 to 2.5 years prior to diagnosis.
Normalizing flow is a class of deep generative models for efficient sampling and likelihood estimation, which achieves attractive performance, particularly in high dimensions. The flow is often implemented using a sequence of invertible residual blocks. Existing works adopt special network architectures and regularization of flow trajectories. In this paper, we develop a neural ODE flow network called JKO-iFlow, inspired by the Jordan-Kinderleherer-Otto (JKO) scheme, which unfolds the discrete-time dynamic of the Wasserstein gradient flow. The proposed method stacks residual blocks one after another, allowing efficient block-wise training of the residual blocks, avoiding sampling SDE trajectories and score matching or variational learning, thus reducing the memory load and difficulty in end-to-end training. We also develop adaptive time reparameterization of the flow network with a progressive refinement of the induced trajectory in probability space to improve the model accuracy further. Experiments with synthetic and real data show that the proposed JKO-iFlow network achieves competitive performance compared with existing flow and diffusion models at a significantly reduced computational and memory cost.
Modeling the behavior of biological tissues and organs often necessitates the knowledge of their shape in the absence of external loads. However, when their geometry is acquired in-vivo through imaging techniques, bodies are typically subject to mechanical deformation due to the presence of external forces, and the load-free configuration needs to be reconstructed. This paper addresses this crucial and frequently overlooked topic, known as the inverse elasticity problem (IEP), by delving into both theoretical and numerical aspects, with a particular focus on cardiac mechanics. In this work, we extend Shield's seminal work to determine the structure of the IEP with arbitrary material inhomogeneities and in the presence of both body and active forces. These aspects are fundamental in computational cardiology, and we show that they may break the variational structure of the inverse problem. In addition, we show that the inverse problem might have no solution even in the presence of constant Neumann boundary conditions and a polyconvex strain energy functional. We then present the results of extensive numerical tests to validate our theoretical framework, and to characterize the computational challenges associated with a direct numerical approximation of the IEP. Specifically, we show that this framework outperforms existing approaches both in terms of robustness and optimality, such as Sellier's iterative procedure, even when the latter is improved with acceleration techniques. A notable discovery is that multigrid preconditioners are, in contrast to standard elasticity, not efficient, where a one-level additive Schwarz and generalized Dryja-Smith-Widlund provide a much more reliable alternative. Finally, we successfully address the IEP for a full-heart geometry, demonstrating that the IEP formulation can compute the stress-free configuration in real-life scenarios.
The morphology and hierarchy of the vascular systems are essential for perfusion in supporting metabolism. In human retina, one of the most energy-demanding organs, retinal circulation nourishes the entire inner retina by an intricate vasculature emerging and remerging at the optic nerve head (ONH). Thus, tracing the vascular branching from ONH through the vascular tree can illustrate vascular hierarchy and allow detailed morphological quantification, and yet remains a challenging task. Here, we presented a novel approach for a robust semi-automatic vessel tracing algorithm on human fundus images by an instance segmentation neural network (InSegNN). Distinct from semantic segmentation, InSegNN separates and labels different vascular trees individually and therefore enable tracing each tree throughout its branching. We have built-in three strategies to improve robustness and accuracy with temporal learning, spatial multi-sampling, and dynamic probability map. We achieved 83% specificity, and 50% improvement in Symmetric Best Dice (SBD) compared to literature, and outperformed baseline U-net. We have demonstrated tracing individual vessel trees from fundus images, and simultaneously retain the vessel hierarchy information. InSegNN paves a way for any subsequent morphological analysis of vascular morphology in relation to retinal diseases.
Retinopathy of prematurity (ROP) is a severe condition affecting premature infants, leading to abnormal retinal blood vessel growth, retinal detachment, and potential blindness. While semi-automated systems have been used in the past to diagnose ROP-related plus disease by quantifying retinal vessel features, traditional machine learning (ML) models face challenges like accuracy and overfitting. Recent advancements in deep learning (DL), especially convolutional neural networks (CNNs), have significantly improved ROP detection and classification. The i-ROP deep learning (i-ROP-DL) system also shows promise in detecting plus disease, offering reliable ROP diagnosis potential. This research comprehensively examines the contemporary progress and challenges associated with using retinal imaging and artificial intelligence (AI) to detect ROP, offering valuable insights that can guide further investigation in this domain. Based on 89 original studies in this field (out of 1487 studies that were comprehensively reviewed), we concluded that traditional methods for ROP diagnosis suffer from subjectivity and manual analysis, leading to inconsistent clinical decisions. AI holds great promise for improving ROP management. This review explores AI's potential in ROP detection, classification, diagnosis, and prognosis.
The integration of large language models (LLMs) into the medical field has gained significant attention due to their promising accuracy in simulated clinical decision-making settings. However, clinical decision-making is more complex than simulations because physicians' decisions are shaped by many factors, including the presence of cognitive bias. However, the degree to which LLMs are susceptible to the same cognitive biases that affect human clinicians remains unexplored. Our hypothesis posits that when LLMs are confronted with clinical questions containing cognitive biases, they will yield significantly less accurate responses compared to the same questions presented without such biases. In this study, we developed BiasMedQA, a novel benchmark for evaluating cognitive biases in LLMs applied to medical tasks. Using BiasMedQA we evaluated six LLMs, namely GPT-4, Mixtral-8x70B, GPT-3.5, PaLM-2, Llama 2 70B-chat, and the medically specialized PMC Llama 13B. We tested these models on 1,273 questions from the US Medical Licensing Exam (USMLE) Steps 1, 2, and 3, modified to replicate common clinically-relevant cognitive biases. Our analysis revealed varying effects for biases on these LLMs, with GPT-4 standing out for its resilience to bias, in contrast to Llama 2 70B-chat and PMC Llama 13B, which were disproportionately affected by cognitive bias. Our findings highlight the critical need for bias mitigation in the development of medical LLMs, pointing towards safer and more reliable applications in healthcare.
Instrumental variables are widely used in econometrics and epidemiology for identifying and estimating causal effects when an exposure of interest is confounded by unmeasured factors. Despite this popularity, the assumptions invoked to justify the use of instruments differ substantially across the literature. Similarly, statistical approaches for estimating the resulting causal quantities vary considerably, and often rely on strong parametric assumptions. In this work, we compile and organize structural conditions that nonparametrically identify conditional average treatment effects, average treatment effects among the treated, and local average treatment effects, with a focus on identification formulae invoking the conditional Wald estimand. Moreover, we build upon existing work and propose nonparametric efficient estimators of functionals corresponding to marginal and conditional causal contrasts resulting from the various identification paradigms. We illustrate the proposed methods on an observational study examining the effects of operative care on adverse events for cholecystitis patients, and a randomized trial assessing the effects of market participation on political views.
Based on interactions between individuals and others and references to social norms, this study reveals the impact of heterogeneity in time preference on wealth distribution and inequality. We present a novel approach that connects the interactions between microeconomic agents that generate heterogeneity to the dynamic equations for capital and consumption in macroeconomic models. Using this approach, we estimate the impact of changes in the discount rate due to microeconomic interactions on capital, consumption and utility and the degree of inequality. The results show that intercomparisons with others regarding consumption significantly affect capital, i.e. wealth inequality. Furthermore, the impact on utility is never small and social norms can reduce this impact. Our supporting evidence shows that the quantitative results of inequality calculations correspond to survey data from cohort and cross-cultural studies. This study's micro-macro connection approach can be deployed to connect microeconomic interactions, such as exchange, interest and debt, redistribution, mutual aid and time preference, to dynamic macroeconomic models.