Based on interactions between individuals and others and references to social norms, this study reveals the impact of heterogeneity in time preference on wealth distribution and inequality. We present a novel approach that connects the interactions between microeconomic agents that generate heterogeneity to the dynamic equations for capital and consumption in macroeconomic models. Using this approach, we estimate the impact of changes in the discount rate due to microeconomic interactions on capital, consumption and utility and the degree of inequality. The results show that intercomparisons with others regarding consumption significantly affect capital, i.e. wealth inequality. Furthermore, the impact on utility is never small and social norms can reduce this impact. Our supporting evidence shows that the quantitative results of inequality calculations correspond to survey data from cohort and cross-cultural studies. This study's micro-macro connection approach can be deployed to connect microeconomic interactions, such as exchange, interest and debt, redistribution, mutual aid and time preference, to dynamic macroeconomic models.
In recent years, several influential computational models and metrics have been proposed to predict how humans comprehend and process sentence. One particularly promising approach is contextual semantic similarity. Inspired by the attention algorithm in Transformer and human memory mechanisms, this study proposes an ``attention-aware'' approach for computing contextual semantic relevance. This new approach takes into account the different contributions of contextual parts and the expectation effect, allowing it to incorporate contextual information fully. The attention-aware approach also facilitates the simulation of existing reading models and evaluate them. The resulting ``attention-aware'' metrics of semantic relevance can more accurately predict fixation durations in Chinese reading tasks recorded in an eye-tracking corpus than those calculated by existing approaches. The study's findings further provide strong support for the presence of semantic preview benefits in Chinese naturalistic reading. Furthermore, the attention-aware metrics of semantic relevance, being memory-based, possess high interpretability from both linguistic and cognitive standpoints, making them a valuable computational tool for modeling eye-movements in reading and further gaining insight into the process of language comprehension. Our approach underscores the potential of these metrics to advance our comprehension of how humans understand and process language, ultimately leading to a better understanding of language comprehension and processing.
In many communication contexts, the capabilities of the involved actors cannot be known beforehand, whether it is a cell, a plant, an insect, or even a life form unknown to Earth. Regardless of the recipient, the message space and time scale could be too fast, too slow, too large, or too small and may never be decoded. Therefore, it pays to devise a way to encode messages agnostic of space and time scales. We propose the use of fractal functions as self-executable infinite-frequency carriers for sending messages, given their properties of structural self-similarity and scale invariance. We call it `fractal messaging'. Starting from a spatial embedding, we introduce a framework for a space-time scale-free messaging approach to this challenge. When considering a space and time-agnostic framework for message transmission, it would be interesting to encode a message such that it could be decoded at several spatio-temporal scales. Hence, the core idea of the framework proposed herein is to encode a binary message as waves along infinitely many frequencies (in power-like distributions) and amplitudes, transmit such a message, and then decode and reproduce it. To do so, the components of the Weierstrass function, a known fractal, are used as carriers of the message. Each component will have its amplitude modulated to embed the binary stream, allowing for a space-time-agnostic approach to messaging.
Fractional dissipation is a powerful tool to study non-local physical phenomena such as damping models. The design of geometric, in particular, variational integrators for the numerical simulation of such systems relies on a variational formulation of the model. In [19], a new approach is proposed to deal with dissipative systems including fractionally damped systems in a variational way for both, the continuous and discrete setting. It is based on the doubling of variables and their fractional derivatives. The aim of this work is to derive higher-order fractional variational integrators by means of convolution quadrature (CQ) based on backward difference formulas. We then provide numerical methods that are of order 2 improving a previous result in [19]. The convergence properties of the fractional variational integrators and saturation effects due to the approximation of the fractional derivatives by CQ are studied numerically.
Quantum hypothesis testing has been traditionally studied from the information-theoretic perspective, wherein one is interested in the optimal decay rate of error probabilities as a function of the number of samples of an unknown state. In this paper, we study the sample complexity of quantum hypothesis testing, wherein the goal is to determine the minimum number of samples needed to reach a desired error probability. By making use of the wealth of knowledge that already exists in the literature on quantum hypothesis testing, we characterize the sample complexity of binary quantum hypothesis testing in the symmetric and asymmetric settings, and we provide bounds on the sample complexity of multiple quantum hypothesis testing. In more detail, we prove that the sample complexity of symmetric binary quantum hypothesis testing depends logarithmically on the inverse error probability and inversely on the negative logarithm of the fidelity. As a counterpart of the quantum Stein's lemma, we also find that the sample complexity of asymmetric binary quantum hypothesis testing depends logarithmically on the inverse type~II error probability and inversely on the quantum relative entropy. Finally, we provide lower and upper bounds on the sample complexity of multiple quantum hypothesis testing, with it remaining an intriguing open question to improve these bounds.
The numerical approximation of dynamic poroelasticity, modeling flow in deformable porous media, by a family of continuous space-time finite element methods is investigated. Equal order approximation in space without any further stabilization is used for the displacement and pore pressure variable. Optimal order $L^\infty(L^2)$ error estimates are proved and numerically confirmed.
We propose a method for obtaining parsimonious decompositions of networks into higher order interactions which can take the form of arbitrary motifs.The method is based on a class of analytically solvable generative models, where vertices are connected via explicit copies of motifs, which in combination with non-parametric priors allow us to infer higher order interactions from dyadic graph data without any prior knowledge on the types or frequencies of such interactions. Crucially, we also consider 'degree--corrected' models that correctly reflect the degree distribution of the network and consequently prove to be a better fit for many real world--networks compared to non-degree corrected models. We test the presented approach on simulated data for which we recover the set of underlying higher order interactions to a high degree of accuracy. For empirical networks the method identifies concise sets of atomic subgraphs from within thousands of candidates that cover a large fraction of edges and include higher order interactions of known structural and functional significance. The method not only produces an explicit higher order representation of the network but also a fit of the network to analytically tractable models opening new avenues for the systematic study of higher order network structures.
Reservoir computing is a machine learning framework that has been shown to be able to replicate the chaotic attractor, including the fractal dimension and the entire Lyapunov spectrum, of the dynamical system on which it is trained. We quantitatively relate the generalized synchronization dynamics of a driven reservoir during the training stage to the performance of the trained reservoir computer at the attractor reconstruction task. We show that, in order to obtain successful attractor reconstruction and Lyapunov spectrum estimation, the largest conditional Lyapunov exponent of the driven reservoir must be significantly more negative than the most negative Lyapunov exponent of the target system. We also find that the maximal conditional Lyapunov exponent of the reservoir depends strongly on the spectral radius of the reservoir adjacency matrix, and therefore, for attractor reconstruction and Lyapunov spectrum estimation, small spectral radius reservoir computers perform better in general. Our arguments are supported by numerical examples on well-known chaotic systems.
Decision making and learning in the presence of uncertainty has attracted significant attention in view of the increasing need to achieve robust and reliable operations. In the case where uncertainty stems from the presence of adversarial attacks this need is becoming more prominent. In this paper we focus on linear and nonlinear classification problems and propose a novel adversarial training method for robust classifiers, inspired by Support Vector Machine (SVM) margins. We view robustness under a data driven lens, and derive finite sample complexity bounds for both linear and non-linear classifiers in binary and multi-class scenarios. Notably, our bounds match natural classifiers' complexity. Our algorithm minimizes a worst-case surrogate loss using Linear Programming (LP) and Second Order Cone Programming (SOCP) for linear and non-linear models. Numerical experiments on the benchmark MNIST and CIFAR10 datasets show our approach's comparable performance to state-of-the-art methods, without needing adversarial examples during training. Our work offers a comprehensive framework for enhancing binary linear and non-linear classifier robustness, embedding robustness in learning under the presence of adversaries.
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.