亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Traditional Byzantine Fault Tolerance (BFT) state machine replication protocols assume a partial synchrony model, leading to a design where a leader replica drives the protocol and is replaced after a timeout. Recently, we witnessed a surge of asynchronous BFT protocols that use randomization to remove the assumptions of bounds on message delivery times, making them more resilient to adverse network conditions. However, these protocols still fall short of being practical across a broad range of scenarios due to their cubic communication costs, use of expensive primitives, and overall protocol complexity. In this paper, we present Alea-BFT, the first asynchronous BFT protocol to achieve quadratic communication complexity, allowing it to scale to large networks. Alea-BFT brings the key design insight from classical protocols of concentrating part of the work on a single designated replica, and incorporates this principle in a two stage pipelined design, with an efficient broadcast led by the designated replica followed by an inexpensive binary agreement. We evaluated our prototype implementation across 10 sites in 4 continents, and our results show significant scalability gains from the proposed design.

相關內容

In recent years, fuzz testing has benefited from increased computational power and important algorithmic advances, leading to systems that have discovered many critical bugs and vulnerabilities in production software. Despite these successes, not all applications can be fuzzed efficiently. In particular, stateful applications such as network protocol implementations are constrained by their low fuzzing throughput and the need to develop fuzzing harnesses that reset their state and isolate their side effects. In this paper, we present SnapFuzz, a novel fuzzing framework for network applications. SnapFuzz offers a robust architecture that transforms slow asynchronous network communication into fast synchronous communication, snapshots the target at the latest point at which it is safe to do so, speeds up all file operations by redirecting them to a custom in-memory filesystem, and removes the need for many fragile modifications, such as configuring time delays or writing clean-up scripts, together with several other improvements. Using SnapFuzz, we fuzzed five popular networking applications: LightFTP, TinyDTLS, Dnsmasq, LIVE555 and Dcmqrscp. We report impressive performance speedups of 62.8x, 41.2x, 30.6x, 24.6x, and 8.4x, respectively, with significantly simpler fuzzing harnesses in all cases. Through its performance advantage, SnapFuzz has also found 12 extra crashes compared to AFLNet in these applications.

Software model checking is a verification technique which is widely used for checking temporal properties of software systems. Even though it is a property verification technique, its common usage in practice is in "bug finding", that is, finding violations of temporal properties. Motivated by this observation and leveraging the recent progress in fuzzing, we build a greybox fuzzing framework to find violations of Linear-time Temporal Logic (LTL) properties. Our framework takes as input a sequential program written in C/C++, and an LTL property. It finds violations, or counterexample traces, of the LTL property in stateful software systems; however, it does not achieve verification. Our work substantially extends directed greybox fuzzing to witness arbitrarily complex event orderings. We note that existing directed greybox fuzzing approaches are limited to witnessing reaching a location or witnessing simple event orderings like use-after-free. At the same time, compared to model checkers, our approach finds the counterexamples faster, thereby finding more counterexamples within a given time budget. Our LTL-Fuzzer tool, built on top of the AFL fuzzer, is shown to be effective in detecting bugs in well-known protocol implementations, such as OpenSSL and Telnet. We use LTL-Fuzzer to reproduce known vulnerabilities (CVEs), to find 15 zero-day bugs by checking properties extracted from RFCs (for which 12 CVEs have been assigned), and to find violations of both safety as well as liveness properties in real-world protocol implementations. Our work represents a practical advance over software model checkers -- while simultaneously representing a conceptual advance over existing greybox fuzzers. Our work thus provides a starting point for understanding the unexplored synergies between software model checking and greybox fuzzing.

The problem of Byzantine consensus has been key to designing secure distributed systems. However, it is particularly difficult, mainly due to the presence of Byzantine processes that act arbitrarily and the unknown message delays in general networks. Although it is well known that both safety and liveness are at risk as soon as $n/3$ Byzantine processes fail, very few works attempted to characterize precisely the faults that produce safety violations from the faults that produce termination violations. In this paper, we present a new lower bound on the solvability of the consensus problem by distinguishing deceitful faults violating safety and benign faults violating termination from the more general Byzantine faults, in what we call the Byzantine-deceitful-benign fault model. We show that one cannot solve consensus if $n\leq 3t+d+2q$ with $t$ Byzantine processes, $d$ deceitful processes, and $q$ benign processes. In addition, we show that this bound is tight by presenting the Basilic class of consensus protocols that solve consensus when $n > 3t+d+2q$. These protocols differ in the number of processes from which they wait to receive messages before progressing. Each of these protocols is thus better suited for some applications depending on the predominance of benign or deceitful faults. Finally, we study the fault tolerance of the Basilic class of consensus protocols in the context of blockchains that need to solve the weaker problem of eventual consensus. We demonstrate that Basilic solves this problem with only $n > 2t+d+q$, hence demonstrating how it can strengthen blockchain security.

Ethereum Improvement Proposal (EIP) 1559 was recently implemented to transform Ethereum's transaction fee market. EIP-1559 utilizes an algorithmic update rule with a constant learning rate to estimate a base fee. The base fee reflects prevailing network conditions and hence provides a more reliable oracle for current gas prices. Using on-chain data from the period after its launch, we evaluate the impact of EIP-1559 on the user experience and market performance. Our empirical findings suggest that although EIP-1559 achieves its goals on average, short-term behavior is marked by intense, chaotic oscillations in block sizes (as predicted by our recent theoretical dynamical system analysis [1]) and slow adjustments during periods of demand bursts (e.g., NFT drops). Both phenomena lead to unwanted inter-block variability in mining rewards. To address this issue, we propose an alternative base fee adjustment rule in which the learning rate varies according to an additive increase, multiplicative decrease (AIMD) update scheme. Our simulations show that the latter robustly outperforms the EIP-1559 protocol under various demand scenarios. These results provide evidence that variable learning rate mechanisms may constitute a promising alternative to the default EIP-1559-based format and contribute to the ongoing discussion on the design of more efficient transaction fee markets.

The security of quantum key distribution (QKD) is severely threatened by discrepancies between realistic devices and theoretical assumptions. Recently, a significant framework called the reference technique was proposed to provide security against arbitrary source flaws, including pulse correlations. Here, we propose an efficient four-phase twin-field QKD using laser pulses adopting the reference technique for security against all possible source imperfections. We present a characterization of source flaws and connect them to experimental data, together with a finite-key analysis. In addition, we demonstrate the feasibility of our protocol through a proof-of-principle experimental implementation and demonstrate a secure key rate of 1.63 kbps with a 20 dB channel loss. Compared with previous QKD protocols with imperfect devices, our work considerably improves both the secure key rate and the transmission distance, and shows application potential in the practical deployment of secure QKD with device imperfections.

We design and implement LEGOStore, an erasure coding (EC) based linearizable data store over geo-distributed public cloud data centers (DCs). For such a data store, the confluence of the following factors opens up opportunities for EC to be latency-competitive with replication: (a) the necessity of communicating with remote DCs to tolerate entire DC failures and implement linearizability; and (b) the emergence of DCs near most large population centers. LEGOStore employs an optimization framework that, for a given object, carefully chooses among replication and EC, as well as among various DC placements to minimize overall costs. To handle workload dynamism, LEGOStore employs a novel agile reconfiguration protocol. Our evaluation using a LEGOStore prototype spanning 9 Google Cloud Platform DCs demonstrates the efficacy of our ideas. We observe cost savings ranging from moderate (5-20\%) to significant (60\%) over baselines representing the state of the art while meeting tail latency SLOs. Our reconfiguration protocol is able to transition key placements in 3 to 4 inter-DC RTTs ($<$ 1s in our experiments), allowing for agile adaptation to dynamic conditions.

Multiparty session types are designed to abstractly capture the structure of communication protocols and verify behavioural properties. One important such property is progress, i.e., the absence of deadlock. Distributed algorithms often resemble multiparty communication protocols. But proving their properties, in particular termination that is closely related to progress, can be elaborate. Since distributed algorithms are often designed to cope with faults, a first step towards using session types to verify distributed algorithms is to integrate fault-tolerance. We extend multiparty session types to cope with system failures such as unreliable communication and process crashes. Moreover, we augment the semantics of processes by failure patterns that can be used to represent system requirements (as, e.g., failure detectors). To illustrate our approach we analyse a variant of the well-known rotating coordinator algorithm by Chandra and Toueg. This technical report presents the proofs and some additional material to extend [30].

Bearing fault identification and analysis is an important research area in the field of machinery fault diagnosis. Aiming at the common faults of rolling bearings, we propose a data-driven diagnostic algorithm based on the characteristics of bearing vibrations called multi-size kernel based adaptive convolutional neural network (MSKACNN). Using raw bearing vibration signals as the inputs, MSKACNN provides vibration feature learning and signal classification capabilities to identify and analyze bearing faults. Ball mixing is a ball bearing production quality problem that is difficult to identify using traditional frequency domain analysis methods since it requires high frequency resolutions of the measurement signals and results in a long analyzing time. The proposed MSKACNN is shown to improve the efficiency and accuracy of ball mixing diagnosis. To further demonstrate the effectiveness of MSKACNN in bearing fault identification, a bearing vibration data acquisition system was developed, and vibration signal acquisition was performed on rolling bearings under five different fault conditions including ball mixing. The resulting datasets were used to analyze the performance of our proposed model. To validate the adaptive ability of MSKACNN, fault test data from the Case Western Reserve University Bearing Data Center were also used. Test results show that MSKACNN can identify the different bearing conditions with high accuracy with high generalization ability. We presented an implementation of the MSKACNN as a lightweight module for a real-time bearing fault diagnosis system that is suitable for production.

In this paper, two reputation based algorithms called Reputation and audit based clustering (RAC) algorithm and Reputation and audit based clustering with auxiliary anchor node (RACA) algorithm are proposed to defend against Byzantine attacks in distributed detection networks when the fusion center (FC) has no prior knowledge of the attacking strategy of Byzantine nodes. By updating the reputation index of the sensors in cluster-based networks, the system can accurately identify Byzantine nodes. The simulation results show that both proposed algorithms have superior detection performance compared with other algorithms. The proposed RACA algorithm works well even when the number of Byzantine nodes exceeds half of the total number of sensors in the network. Furthermore, the robustness of our proposed algorithms is evaluated in a dynamically changing scenario, where the attacking parameters change over time. We show that our algorithms can still achieve superior detection performance.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

北京阿比特科技有限公司