In this paper we study parametric TraceFEM and parametric SurfaceFEM (SFEM) discretizations of a surface Stokes problem. These methods are applied both to the Stokes problem in velocity-pressure formulation and in stream function formulation. A class of higher order methods is presented in a unified framework. Numerical efficiency aspects of the two formulations are discussed and a systematic comparison of TraceFEM and SFEM is given. A benchmark problem is introduced in which a scalar reference quantity is defined and numerically determined.
A parallel implementation of a compatible discretization scheme for steady-state Stokes problems is presented in this work. The scheme uses generalized moving least squares to generate differential operators and apply boundary conditions. This meshless scheme allows a high-order convergence for both the velocity and pressure, while also incorporates finite-difference-like sparse discretization. Additionally, the method is inherently scalable: the stencil generation process requires local inversion of matrices amenable to GPU acceleration, and the divergence-free treatment of velocity replaces the traditional saddle point structure of the global system with elliptic diagonal blocks amenable to algebraic multigrid. The implementation in this work uses a variety of Trilinos packages to exploit this local and global parallelism, and benchmarks demonstrating high-order convergence and weak scalability are provided.
This paper focuses on the analytical probabilistic modeling of vehicular traffic. It formulates a stochastic node model. It then formulates a network model by coupling the node model with the link model of Lu and Osorio (2018), which is a stochastic formulation of the traffic-theoretic link transmission model. The proposed network model is scalable and computationally efficient, making it suitable for urban network optimization. For a network with $r$ links, each of space capacity $\ell$, the model has a complexity of $\mathcal{O}(r\ell)$. The network model yields the marginal distribution of link states. The model is validated versus a simulation-based network implementation of the stochastic link transmission model. The validation experiments consider a set of small network with intricate traffic dynamics. For all scenarios, the proposed model accurately captures the traffic dynamics. The network model is used to address a signal control problem. Compared to the probabilistic link model of Lu and Osorio (2018) with an exogenous node model and a benchmark deterministic network loading model, the proposed network model derives signal plans with better performance. The case study highlights the added value of using between-link (i.e., across-node) interaction information for traffic management and accounting for stochasticity in the network.
Estimation of population size using incomplete lists (also called the capture-recapture problem) has a long history across many biological and social sciences. For example, human rights and other groups often construct partial and overlapping lists of victims of armed conflicts, with the hope of using this information to estimate the total number of victims. Earlier statistical methods for this setup either use potentially restrictive parametric assumptions, or else rely on typically suboptimal plug-in-type nonparametric estimators; however, both approaches can lead to substantial bias, the former via model misspecification and the latter via smoothing. Under an identifying assumption that two lists are conditionally independent given measured covariate information, we make several contributions. First we derive the nonparametric efficiency bound for estimating the capture probability, which indicates the best possible performance of any estimator, and sheds light on the statistical limits of capture-recapture methods. Then we present a new estimator, and study its finite-sample properties, showing that it has a double robustness property new to capture-recapture, and that it is near-optimal in a non-asymptotic sense, under relatively mild nonparametric conditions. Next, we give a method for constructing confidence intervals for total population size from generic capture probability estimators, and prove non-asymptotic near-validity. Finally, we study our methods in simulations, and apply them to estimate the number of killings and disappearances attributable to different groups in Peru during its internal armed conflict between 1980 and 2000.
We propose a uniform block diagonal preconditioner for the condensed $H$(div)-conforming HDG scheme of a parameter-dependent saddle point problem that includes the generalized Stokes problem and linear elasticity. An optimal preconditioner is obtained for the stiffness matrix for the velocity/displacement block via auxiliary space preconditioning (ASP) technique. A robust preconditioner spectrally equivalent to the Schur complement of element-piecewise constant pressure space is also constructed. Finally, numerical results of generalized Stokes and steady linear elasticity equations verify the robustness of our proposed preconditioner with respect to mesh size, Lam\'e parameters and time step size.
Characterizing the connection between material design decisions/parameters and their effective properties allows for accelerated materials development and optimization. We present a global sensitivity analysis of woven composite thermophysical properties, including density, volume fraction, thermal conductivity, specific heat, moduli, permeability, and tortuosity, predicted using mesoscale finite element simulations. The mesoscale simulations use microscale approximations for the tow and matrix phases. We performed Latin hypercube sampling of viable input parameter ranges, and the resulting effective property distributions are analyzed using a surrogate model to determine the correlations between material parameters and responses, interactions between properties, and finally Sobol' indices and sensitivities. We demonstrate that both constituent physical properties and the mesoscale geometry strongly influence the composite material properties.
Spectral residual methods are powerful tools for solving nonlinear systems of equations without derivatives. In a recent paper, it was shown that an acceleration technique based on the Sequential Secant Method can greatly improve its efficiency and robustness. In the present work, an R implementation of the method is presented. Numerical experiments with a widely used test bed compares the presented approach with its plain (i.e. non-accelerated) version that makes part of the R package BB. Additional numerical experiments compare the proposed method with NITSOL, a state-of-the-art solver for nonlinear systems. The comparison shows that the acceleration process greatly improves the robustness of its counterpart included in the existent R package. As a by-product, an interface is provided between R and the consolidated CUTEst collection, which contains over a thousand nonlinear programming problems of all types and represents a standard for evaluating the performance of optimization methods.
We introduce a mimetic dual-field discretization which conserves mass, kinetic energy and helicity for three-dimensional incompressible Navier-Stokes equations. The discretization makes use of a conservative dual-field mixed weak formulation where two evolution equations of velocity are employed and dual representations of the solution are sought for each variable. A temporal discretization, which staggers the evolution equations and handles the nonlinearity such that the resulting discrete algebraic systems are linear and decoupled, is constructed. The spatial discretization is mimetic in the sense that the finite dimensional function spaces form a discrete de Rham complex. Conservation of mass, kinetic energy and helicity in the absence of dissipative terms is proven at the discrete level. Proper dissipation rates of kinetic energy and helicity in the viscous case is also proven. Numerical tests supporting the method are provided.
We present a novel approach for high-order accurate numerical differentiation on unstructured meshes of quadrilateral elements. To differentiate a given function, an auxiliary function with greater smoothness properties is defined which when differentiated provides the derivatives of the original function. The method generalises traditional finite difference methods to meshes of arbitrary topology in any number of dimensions for any order of derivative and accuracy. We demonstrate the accuracy of the numerical scheme using dual quadrilateral meshes and a refinement method based on subdivision surfaces. The scheme is applied to the solution of a range of partial differential equations, including both linear and nonlinear, and second and fourth order equations.
Recently, a new concept called multiplicative differential cryptanalysis and the corresponding $c$-differential uniformity were introduced by Ellingsen et al.~\cite{Ellingsen2020}, and then some low differential uniformity functions were constructed. In this paper, we further study the constructions of perfect $c$-nonlinear (PcN) power functions. First, we give a necessary and sufficient condition for the Gold function to be PcN and a conjecture on all power functions to be PcN over $\gf(2^m)$. Second, several classes of PcN power functions are obtained over finite fields of odd characteristic for $c=-1$ and our theorems generalize some results in~\cite{Bartoli,Hasan,Zha2020}. Finally, the $c$-differential spectrum of a class of almost perfect $c$-nonlinear (APcN) power functions is determined.
The use of orthogonal projections on high-dimensional input and target data in learning frameworks is studied. First, we investigate the relations between two standard objectives in dimension reduction, maximizing variance and preservation of pairwise relative distances. The derivation of their asymptotic correlation and numerical experiments tell that a projection usually cannot satisfy both objectives. In a standard classification problem we determine projections on the input data that balance them and compare subsequent results. Next, we extend our application of orthogonal projections to deep learning frameworks. We introduce new variational loss functions that enable integration of additional information via transformations and projections of the target data. In two supervised learning problems, clinical image segmentation and music information classification, the application of the proposed loss functions increase the accuracy.