亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Grover's algorithm, a well-know quantum search algorithm, allows one to find the correct item in a database, with quadratic speedup. In this paper we adapt Grover's algorithm to the problem of finding a correct answer to a natural language question in English, thus contributing to the growing field of Quantum Natural Language Processing. Using a grammar that can be interpreted as tensor contractions, each word is represented as a quantum state that serves as input to the quantum circuit. We here introduce a quantum measurement to contract the representations of words, resulting in the representation of larger text fragments. Using this framework, a representation for the question is found that contains all the possible answers in equal quantum superposition, and allows for the building of an oracle that can detect a correct answer, being agnostic to the specific question. Furthermore, we show that our construction can deal with certain types of ambiguous phrases by keeping the various different meanings in quantum superposition.

相關內容

自動(dong)問(wen)答(da)(Question Answering, QA)是(shi)(shi)指(zhi)利用(yong)計算機自動(dong)回(hui)答(da)用(yong)戶所提出(chu)的(de)(de)(de)問(wen)題以滿(man)足(zu)用(yong)戶知識需求的(de)(de)(de)任務(wu)。不同于(yu)現有搜索引擎,問(wen)答(da)系統是(shi)(shi)信息(xi)服務(wu)的(de)(de)(de)一種(zhong)高級(ji)形式,系統返(fan)回(hui)用(yong)戶的(de)(de)(de)不再是(shi)(shi)基于(yu)關(guan)鍵詞匹配排序的(de)(de)(de)文檔列表,而是(shi)(shi)精(jing)準的(de)(de)(de)自然語言答(da)案。近年來,隨著(zhu)人工(gong)智能的(de)(de)(de)飛速發展(zhan),自動(dong)問(wen)答(da)已經(jing)成為倍(bei)受關(guan)注且發展(zhan)前景廣(guang)泛的(de)(de)(de)研究(jiu)方向。

知識薈萃

精品入門(men)和(he)進階教程、論文和(he)代碼整理等

更多

查看相關VIP內容、論(lun)文(wen)、資訊等

Expert finding has been well-studied in community question answering (QA) systems in various domains. However, none of these studies addresses expert finding in the legal domain, where the goal is for citizens to find lawyers based on their expertise. In the legal domain, there is a large knowledge gap between the experts and the searchers, and the content on the legal QA websites consist of a combination formal and informal communication. In this paper, we propose methods for generating query-dependent textual profiles for lawyers covering several aspects including sentiment, comments, and recency. We combine query-dependent profiles with existing expert finding methods. Our experiments are conducted on a novel dataset gathered from an online legal QA service. We discovered that taking into account different lawyer profile aspects improves the best baseline model. We make our dataset publicly available for future work.

Prior studies in privacy policies frame the question answering (QA) tasks as identifying the most relevant text segment or a list of sentences from the policy document for a user query. However, annotating such a dataset is challenging as it requires specific domain expertise (e.g., law academics). Even if we manage a small-scale one, a bottleneck that remains is that the labeled data are heavily imbalanced (only a few segments are relevant) --limiting the gain in this domain. Therefore, in this paper, we develop a novel data augmentation framework based on ensembling retriever models that captures the relevant text segments from unlabeled policy documents and expand the positive examples in the training set. In addition, to improve the diversity and quality of the augmented data, we leverage multiple pre-trained language models (LMs) and cascaded them with noise reduction oracles. Using our augmented data on the PrivacyQA benchmark, we elevate the existing baseline by a large margin (10\% F1) and achieve a new state-of-the-art F1 score of 50\%. Our ablation studies provide further insights into the effectiveness of our approach.

The COVID-19 pandemic is accompanied by a massive "infodemic" that makes it hard to identify concise and credible information for COVID-19-related questions, like incubation time, infection rates, or the effectiveness of vaccines. As a novel solution, our paper is concerned with designing a question-answering system based on modern technologies from natural language processing to overcome information overload and misinformation in pandemic situations. To carry out our research, we followed a design science research approach and applied Ingwersen's cognitive model of information retrieval interaction to inform our design process from a socio-technical lens. On this basis, we derived prescriptive design knowledge in terms of design requirements and design principles, which we translated into the construction of a prototypical instantiation. Our implementation is based on the comprehensive CORD-19 dataset, and we demonstrate our artifact's usefulness by evaluating its answer quality based on a sample of COVID-19 questions labeled by biomedical experts.

Bridging the semantic gap between image and question is an important step to improve the accuracy of the Visual Question Answering (VQA) task. However, most of the existing VQA methods focus on attention mechanisms or visual relations for reasoning the answer, while the features at different semantic levels are not fully utilized. In this paper, we present a new reasoning framework to fill the gap between visual features and semantic clues in the VQA task. Our method first extracts the features and predicates from the image and question. We then propose a new reasoning framework to effectively jointly learn these features and predicates in a coarse-to-fine manner. The intensively experimental results on three large-scale VQA datasets show that our proposed approach achieves superior accuracy comparing with other state-of-the-art methods. Furthermore, our reasoning framework also provides an explainable way to understand the decision of the deep neural network when predicting the answer.

The success of deep learning has enabled advances in multimodal tasks that require non-trivial fusion of multiple input domains. Although multimodal models have shown potential in many problems, their increased complexity makes them more vulnerable to attacks. A Backdoor (or Trojan) attack is a class of security vulnerability wherein an attacker embeds a malicious secret behavior into a network (e.g. targeted misclassification) that is activated when an attacker-specified trigger is added to an input. In this work, we show that multimodal networks are vulnerable to a novel type of attack that we refer to as Dual-Key Multimodal Backdoors. This attack exploits the complex fusion mechanisms used by state-of-the-art networks to embed backdoors that are both effective and stealthy. Instead of using a single trigger, the proposed attack embeds a trigger in each of the input modalities and activates the malicious behavior only when both the triggers are present. We present an extensive study of multimodal backdoors on the Visual Question Answering (VQA) task with multiple architectures and visual feature backbones. A major challenge in embedding backdoors in VQA models is that most models use visual features extracted from a fixed pretrained object detector. This is challenging for the attacker as the detector can distort or ignore the visual trigger entirely, which leads to models where backdoors are over-reliant on the language trigger. We tackle this problem by proposing a visual trigger optimization strategy designed for pretrained object detectors. Through this method, we create Dual-Key Backdoors with over a 98% attack success rate while only poisoning 1% of the training data. Finally, we release TrojVQA, a large collection of clean and trojan VQA models to enable research in defending against multimodal backdoors.

Knowledge base question answering (KBQA) aims to answer a question over a knowledge base (KB). Early studies mainly focused on answering simple questions over KBs and achieved great success. However, their performance on complex questions is still far from satisfactory. Therefore, in recent years, researchers propose a large number of novel methods, which looked into the challenges of answering complex questions. In this survey, we review recent advances on KBQA with the focus on solving complex questions, which usually contain multiple subjects, express compound relations, or involve numerical operations. In detail, we begin with introducing the complex KBQA task and relevant background. Then, we describe benchmark datasets for complex KBQA task and introduce the construction process of these datasets. Next, we present two mainstream categories of methods for complex KBQA, namely semantic parsing-based (SP-based) methods and information retrieval-based (IR-based) methods. Specifically, we illustrate their procedures with flow designs and discuss their major differences and similarities. After that, we summarize the challenges that these two categories of methods encounter when answering complex questions, and explicate advanced solutions and techniques used in existing work. Finally, we conclude and discuss several promising directions related to complex KBQA for future research.

Many texts, especially in chemistry and biology, describe complex processes. We focus on texts that describe a chemical reaction process and questions that ask about the process's outcome under different environmental conditions. To answer questions about such processes, one needs to understand the interactions between the different entities involved in the process and to simulate their state transitions during the process execution under different conditions. A state transition is defined as the memory modification the program does to the variables during the execution. We hypothesize that generating code and executing it to simulate the process will allow answering such questions. We, therefore, define a domain-specific language (DSL) to represent processes. We contribute to the community a unique dataset curated by chemists and annotated by computer scientists. The dataset is composed of process texts, simulation questions, and their corresponding computer codes represented by the DSL.We propose a neural program synthesis approach based on reinforcement learning with a novel state-transition semantic reward. The novel reward is based on the run-time semantic similarity between the predicted code and the reference code. This allows simulating complex process transitions and thus answering simulation questions. Our approach yields a significant boost in accuracy for simulation questions: 88\% accuracy as opposed to 83\% accuracy of the state-of-the-art neural program synthesis approaches and 54\% accuracy of state-of-the-art end-to-end text-based approaches.

Video question answering requires the models to understand and reason about both the complex video and language data to correctly derive the answers. Existing efforts have been focused on designing sophisticated cross-modal interactions to fuse the information from two modalities, while encoding the video and question holistically as frame and word sequences. Despite their success, these methods are essentially revolving around the sequential nature of video- and question-contents, providing little insight to the problem of question-answering and lacking interpretability as well. In this work, we argue that while video is presented in frame sequence, the visual elements (e.g., objects, actions, activities and events) are not sequential but rather hierarchical in semantic space. To align with the multi-granular essence of linguistic concepts in language queries, we propose to model video as a conditional graph hierarchy which weaves together visual facts of different granularity in a level-wise manner, with the guidance of corresponding textual cues. Despite the simplicity, our extensive experiments demonstrate the superiority of such conditional hierarchical graph architecture, with clear performance improvements over prior methods and also better generalization across different type of questions. Further analyses also demonstrate the model's reliability as it shows meaningful visual-textual evidences for the predicted answers.

Recent video question answering benchmarks indicate that state-of-the-art models struggle to answer compositional questions. However, it remains unclear which types of compositional reasoning cause models to mispredict. Furthermore, it is difficult to discern whether models arrive at answers using compositional reasoning or by leveraging data biases. In this paper, we develop a question decomposition engine that programmatically deconstructs a compositional question into a directed acyclic graph of sub-questions. The graph is designed such that each parent question is a composition of its children. We present AGQA-Decomp, a benchmark containing $2.3M$ question graphs, with an average of $11.49$ sub-questions per graph, and $4.55M$ total new sub-questions. Using question graphs, we evaluate three state-of-the-art models with a suite of novel compositional consistency metrics. We find that models either cannot reason correctly through most compositions or are reliant on incorrect reasoning to reach answers, frequently contradicting themselves or achieving high accuracies when failing at intermediate reasoning steps.

Top-down visual attention mechanisms have been used extensively in image captioning and visual question answering (VQA) to enable deeper image understanding through fine-grained analysis and even multiple steps of reasoning. In this work, we propose a combined bottom-up and top-down attention mechanism that enables attention to be calculated at the level of objects and other salient image regions. This is the natural basis for attention to be considered. Within our approach, the bottom-up mechanism (based on Faster R-CNN) proposes image regions, each with an associated feature vector, while the top-down mechanism determines feature weightings. Applying this approach to image captioning, our results on the MSCOCO test server establish a new state-of-the-art for the task, achieving CIDEr / SPICE / BLEU-4 scores of 117.9, 21.5 and 36.9, respectively. Demonstrating the broad applicability of the method, applying the same approach to VQA we obtain first place in the 2017 VQA Challenge.

北京阿比特科技有限公司