亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Randomized algorithms are important for solving large-scale optimization problems. In this paper, we propose a fast sketching algorithm for least square problems regularized by convex or nonconvex regularization functions, Sketching for Regularized Optimization (SRO). Our SRO algorithm first generates a sketch of the original data matrix, then solves the sketched problem. Different from existing randomized algorithms, our algorithm handles general Frechet subdifferentiable regularization functions in an unified framework. We present general theoretical result for the approximation error between the optimization results of the original problem and the sketched problem for regularized least square problems which can be convex or nonconvex. For arbitrary convex regularizer, relative-error bound is proved for the approximation error. Importantly, minimax rates for sparse signal estimation by solving the sketched sparse convex or nonconvex learning problems are also obtained using our general theoretical result under mild conditions. To the best of our knowledge, our results are among the first to demonstrate minimax rates for convex or nonconvex sparse learning problem by sketching under a unified theoretical framework. We further propose an iterative sketching algorithm which reduces the approximation error exponentially by iteratively invoking the sketching algorithm. Experimental results demonstrate the effectiveness of the proposed SRO and Iterative SRO algorithms.

相關內容

In this paper, we delve into the challenge of optimizing joint communication and computation for semantic communication over wireless networks using a probability graph framework. In the considered model, the base station (BS) extracts the small-sized compressed semantic information through removing redundant messages based on the stored knowledge base. Specifically, the knowledge base is encapsulated in a probability graph that encapsulates statistical relations. At the user side, the compressed information is accurately deduced using the same probability graph employed by the BS. While this approach introduces an additional computational overhead for semantic information extraction, it significantly curtails communication resource consumption by transmitting concise data. We derive both communication and computation cost models based on the inference process of the probability graph. Building upon these models, we introduce a joint communication and computation resource allocation problem aimed at minimizing the overall energy consumption of the network, while accounting for latency, power, and semantic constraints. To address this problem, we obtain a closed-form solution for transmission power under a fixed semantic compression ratio. Subsequently, we propose an efficient linear search-based algorithm to attain the optimal solution for the considered problem with low computational complexity. Simulation results underscore the effectiveness of our proposed system, showcasing notable improvements compared to conventional non-semantic schemes.

In this paper we propose a multiscale method for the acoustic wave equation in highly oscillatory media. We use a higher-order extension of the localized orthogonal decomposition method combined with a higher-order time stepping scheme and present rigorous a-priori error estimates in the energy-induced norm. We find that in the very general setting without additional assumptions on the coefficient beyond boundedness, arbitrary orders of convergence cannot be expected but that increasing the polynomial degree may still considerably reduce the size of the error. Under additional regularity assumptions, higher orders can be obtained as well. Numerical examples are presented that confirm the theoretical results.

In this paper, we define two particular forms of non-termination, namely loops and binary chains, in an abstract framework that encompasses term rewriting and logic programming. The definition of loops relies on the notion of compatibility of binary relations. We also present a syntactic criterion for the detection of a special case of binary chains. Moreover, we describe our implementation NTI and compare its results at the Termination Competition 2023 with those of leading analyzers.

In this paper, we investigate a model relevant to semantics-aware goal-oriented communications, and we propose a new metric that incorporates the utilization of information in addition to its timelines. Specifically, we consider the transmission of observations from an external process to a battery-powered receiver through status updates. These updates inform the receiver about the process status and enable actuation if sufficient energy is available to achieve a goal. We focus on a wireless power transfer (WPT) model, where the receiver receives energy from a dedicated power transmitter and occasionally from the data transmitter when they share a common channel. We analyze the Age of Information (AoI) and propose a new metric, the \textit{Age of Actuation (AoA), which is relevant when the receiver utilizes the status updates to perform actions in a timely manner}. We provide analytical characterizations of the average AoA and the violation probability of the AoA, demonstrating that AoA generalizes AoI. Moreover, we introduce and analytically characterize the \textit{Probability of Missing Actuation (PoMA)}; this metric becomes relevant also \textit{to quantify the incurred cost of a missed action}. We formulate unconstrained and constrained optimization problems for all the metrics and present numerical evaluations of our analytical results. This proposed set of metrics goes beyond the traditional timeliness metrics since the synergy of different flows is now considered.

In this paper, we study quantitative properties of quantum programs. Properties of interest include (positive) almost-sure termination, expected runtime or expected cost, that is, for example, the expected number of applications of a given quantum gate, etc. After studying the completeness of these problems in the arithmetical hierarchy over the Clifford+T fragment of quantum mechanics, we express these problems using a variation of a quantum pre-expectation transformer, a weakest precondition based technique that allows to symbolically compute these quantitative properties. Under a smooth restriction-a restriction to polynomials of bounded degree over a real closed field-we show that the quantitative problem, which consists in finding an upper-bound to the pre-expectation, can be decided in time double-exponential in the size of a program, thus providing, despite its great complexity, one of the first decidable results on the analysis and verification of quantum programs. Finally, we sketch how the latter can be transformed into an efficient synthesis method.

Through this paper, we introduce a novel driver cognitive load assessment dataset, CL-Drive, which contains Electroencephalogram (EEG) signals along with other physiological signals such as Electrocardiography (ECG) and Electrodermal Activity (EDA) as well as eye tracking data. The data was collected from 21 subjects while driving in an immersive vehicle simulator, in various driving conditions, to induce different levels of cognitive load in the subjects. The tasks consisted of 9 complexity levels for 3 minutes each. Each driver reported their subjective cognitive load every 10 seconds throughout the experiment. The dataset contains the subjective cognitive load recorded as ground truth. In this paper, we also provide benchmark classification results for different machine learning and deep learning models for both binary and ternary label distributions. We followed 2 evaluation criteria namely 10-fold and leave-one-subject-out (LOSO). We have trained our models on both hand-crafted features as well as on raw data.

In this paper, we build a visual dialogue dataset, named InfoVisDial, which provides rich informative answers in each round even with external knowledge related to the visual content. Different from existing datasets where the answer is compact and short, InfoVisDial contains long free-form answers with rich information in each round of dialogue. For effective data collection, the key idea is to bridge the large-scale multimodal model (e.g., GIT) and the language models (e.g., GPT-3). GIT can describe the image content even with scene text, while GPT-3 can generate informative dialogue based on the image description and appropriate prompting techniques. With such automatic pipeline, we can readily generate informative visual dialogue data at scale. Then, we ask human annotators to rate the generated dialogues to filter the low-quality conversations.Human analyses show that InfoVisDial covers informative and diverse dialogue topics: $54.4\%$ of the dialogue rounds are related to image scene texts, and $36.7\%$ require external knowledge. Each round's answer is also long and open-ended: $87.3\%$ of answers are unique with an average length of $8.9$, compared with $27.37\%$ and $2.9$ in VisDial. Last, we propose a strong baseline by adapting the GIT model for the visual dialogue task and fine-tune the model on InfoVisDial. Hopefully, our work can motivate more effort on this direction.

In this paper, we introduce an innovative approach for extracting trajectories from a camera sensor in GPS-denied environments, leveraging visual odometry. The system takes video footage captured by a forward-facing camera mounted on a vehicle as input, with the output being a chain code representing the camera's trajectory. The proposed methodology involves several key steps. Firstly, we employ phase correlation between consecutive frames of the video to extract essential information. Subsequently, we introduce a novel chain code method termed "dynamic chain code," which is based on the x-shift values derived from the phase correlation. The third step involves determining directional changes (forward, left, right) by establishing thresholds and extracting the corresponding chain code. This extracted code is then stored in a buffer for further processing. Notably, our system outperforms traditional methods reliant on spatial features, exhibiting greater speed and robustness in noisy environments. Importantly, our approach operates without external camera calibration information. Moreover, by incorporating visual odometry, our system enhances its accuracy in estimating camera motion, providing a more comprehensive understanding of trajectory dynamics. Finally, the system culminates in the visualization of the normalized camera motion trajectory.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

北京阿比特科技有限公司