Protecting personal data about individuals, such as event traces in process mining, is an inherently difficult task since an event trace leaks information about the path in a process model that an individual has triggered. Yet, prior anonymization methods of event traces like k-anonymity or event log sanitization struggled to protect against such leakage, in particular against adversaries with sufficient background knowledge. In this work, we provide a method that tackles the challenge of summarizing sensitive event traces by learning the underlying process tree in a privacy-preserving manner. We prove via the so-called Differential Privacy (DP) property that from the resulting summaries no useful inference can be drawn about any personal data in an event trace. On the technical side, we introduce a differentially private approximation (DPIM) of the Inductive Miner. Experimentally, we compare our DPIM with the Inductive Miner on 14 real-world event traces by evaluating well-known metrics: fitness, precision, simplicity, and generalization. The experiments show that our DPIM not only protects personal data but also generates faithful process trees that exhibit little utility loss above the Inductive Miner.
Functional data describe a wide range of processes, such as growth curves and spectral absorption. In this study, we analyze air pollution data from the In-service Aircraft for a Global Observing System, focusing on the spatial interactions among chemicals in the atmosphere and their dependence on meteorological conditions. This requires functional regression, where both response and covariates are functional objects evolving over the troposphere. Evaluating both the functional relatedness between the response and covariates and the relatedness of a multivariate response function can be challenging. We propose a solution to these challenges by introducing a functional Gaussian graphical regression model, extending conditional Gaussian graphical models to partially separable functions. To estimate the model, we propose a doubly-penalized estimator. Additionally, we present a novel adaptation of Kullback-Leibler cross-validation tailored for graph estimators which accounts for precision and regression matrices when the population presents one or more sub-groups, named joint Kullback-Leibler cross-validation. Evaluation of model performance is done in terms of Kullback-Leibler divergence and graph recovery power.
In systems modelling, a 'system' typically comprises located resources relative to which processes execute. One important use of logic in informatics is in modelling such systems for the purpose of reasoning (perhaps automated) about their behaviour and properties. To this end, one requires an interpretation of logical formulae in terms of the resources and states of the system; such an interpretation is called a 'resource semantics' of the logic. This paper shows how inferentialism -- the view that meaning is given in terms of inferential behaviour -- enables a versatile and expressive framework for resource semantics. Specifically, how inferentialism seamlessly incorporates the assertion-based approach of the logic of Bunched Implications, foundational in program verification (e.g., as the basis of Separation Logic), and the renowned number-of-uses reading of Linear Logic. This integration enables reasoning about shared and separated resources in intuitive and familiar ways, as well as about the composition and interfacing of system components.
Inverse weighting with an estimated propensity score is widely used by estimation methods in causal inference to adjust for confounding bias. However, directly inverting propensity score estimates can lead to instability, bias, and excessive variability due to large inverse weights, especially when treatment overlap is limited. In this work, we propose a post-hoc calibration algorithm for inverse propensity weights that generates well-calibrated, stabilized weights from user-supplied, cross-fitted propensity score estimates. Our approach employs a variant of isotonic regression with a loss function specifically tailored to the inverse propensity weights. Through theoretical analysis and empirical studies, we demonstrate that isotonic calibration improves the performance of doubly robust estimators of the average treatment effect.
Disentangled representation learning in speech processing has lagged behind other domains, largely due to the lack of datasets with annotated generative factors for robust evaluation. To address this, we propose SynSpeech, a novel large-scale synthetic speech dataset specifically designed to enable research on disentangled speech representations. SynSpeech includes controlled variations in speaker identity, spoken text, and speaking style, with three dataset versions to support experimentation at different levels of complexity. In this study, we present a comprehensive framework to evaluate disentangled representation learning techniques, applying both linear probing and established supervised disentanglement metrics to assess the modularity, compactness, and explicitness of the representations learned by a state-of-the-art model. Using the RAVE model as a test case, we find that SynSpeech facilitates benchmarking across a range of factors, achieving promising disentanglement of simpler features like gender and speaking style, while highlighting challenges in isolating complex attributes like speaker identity. This benchmark dataset and evaluation framework fills a critical gap, supporting the development of more robust and interpretable speech representation learning methods.
We introduce an approach for analyzing the responses of dynamical systems to external perturbations that combines score-based generative modeling with the Generalized Fluctuation-Dissipation Theorem (GFDT). The methodology enables accurate estimation of system responses, including those with non-Gaussian statistics. We numerically validate our approach using time-series data from three different stochastic partial differential equations of increasing complexity: an Ornstein-Uhlenbeck process with spatially correlated noise, a modified stochastic Allen-Cahn equation, and the 2D Navier-Stokes equations. We demonstrate the improved accuracy of the methodology over conventional methods and discuss its potential as a versatile tool for predicting the statistical behavior of complex dynamical systems.
Accurate approximation of a real-valued function depends on two aspects of the available data: the density of inputs within the domain of interest and the variation of the outputs over that domain. There are few methods for assessing whether the density of inputs is \textit{sufficient} to identify the relevant variations in outputs -- i.e., the ``geometric scale'' of the function -- despite the fact that sampling density is closely tied to the success or failure of an approximation method. In this paper, we introduce a general purpose, computational approach to detecting the geometric scale of real-valued functions over a fixed domain using a deterministic interpolation technique from computational geometry. The algorithm is intended to work on scalar data in moderate dimensions (2-10). Our algorithm is based on the observation that a sequence of piecewise linear interpolants will converge to a continuous function at a quadratic rate (in $L^2$ norm) if and only if the data are sampled densely enough to distinguish the feature from noise (assuming sufficiently regular sampling). We present numerical experiments demonstrating how our method can identify feature scale, estimate uncertainty in feature scale, and assess the sampling density for fixed (i.e., static) datasets of input-output pairs. We include analytical results in support of our numerical findings and have released lightweight code that can be adapted for use in a variety of data science settings.
The information bottleneck (IB) method is a technique for extracting information that is relevant for predicting the target random variable from the source random variable, which is typically implemented by optimizing the IB Lagrangian that balances the compression and prediction terms. However, the IB Lagrangian is hard to optimize, and multiple trials for tuning values of Lagrangian multiplier are required. Moreover, we show that the prediction performance strictly decreases as the compression gets stronger during optimizing the IB Lagrangian. In this paper, we implement the IB method from the perspective of supervised disentangling. Specifically, we introduce Disentangled Information Bottleneck (DisenIB) that is consistent on compressing source maximally without target prediction performance loss (maximum compression). Theoretical and experimental results demonstrate that our method is consistent on maximum compression, and performs well in terms of generalization, robustness to adversarial attack, out-of-distribution detection, and supervised disentangling.
Graphs, which describe pairwise relations between objects, are essential representations of many real-world data such as social networks. In recent years, graph neural networks, which extend the neural network models to graph data, have attracted increasing attention. Graph neural networks have been applied to advance many different graph related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytical tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges, the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.
Link prediction for knowledge graphs is the task of predicting missing relationships between entities. Previous work on link prediction has focused on shallow, fast models which can scale to large knowledge graphs. However, these models learn less expressive features than deep, multi-layer models -- which potentially limits performance. In this work, we introduce ConvE, a multi-layer convolutional network model for link prediction, and report state-of-the-art results for several established datasets. We also show that the model is highly parameter efficient, yielding the same performance as DistMult and R-GCN with 8x and 17x fewer parameters. Analysis of our model suggests that it is particularly effective at modelling nodes with high indegree -- which are common in highly-connected, complex knowledge graphs such as Freebase and YAGO3. In addition, it has been noted that the WN18 and FB15k datasets suffer from test set leakage, due to inverse relations from the training set being present in the test set -- however, the extent of this issue has so far not been quantified. We find this problem to be severe: a simple rule-based model can achieve state-of-the-art results on both WN18 and FB15k. To ensure that models are evaluated on datasets where simply exploiting inverse relations cannot yield competitive results, we investigate and validate several commonly used datasets -- deriving robust variants where necessary. We then perform experiments on these robust datasets for our own and several previously proposed models, and find that ConvE achieves state-of-the-art Mean Reciprocal Rank across all datasets.