亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The crossing number of a graph $G$, $\mathrm{cr}(G)$, is the minimum number of edge crossings arising when drawing a graph on a certain surface. Determining $\mathrm{cr}(G)$ is a problem of great importance in Graph Theory. Its maximum variant, i.e. the maximum crossing number, $\mathrm{max-cr}(G)$, is receiving growing attention. Instead of an optimization problem on the number of crossings, here we consider the variance of the number of edge crossings, when embedding the vertices of an arbitrary graph uniformly at random in some space. In his pioneering research, Moon derived this variance on random linear arrangements of complete unipartite and bipartite graphs. Given the need of efficient algorithms to support this sort of research and given also the growing interest of the number of edge crossings in spatial networks, networks where vertices are embedded in some space, here we derive an algorithm to calculate the variance in arbitrary graphs in time $o(nm^2)$ that we transform into one that runs in time $O(nm)$ by reusing computations. We also derive one for forests that runs in time $O(n)$. These algorithms work on a wide range of random layouts (not only on Moon's) and are based on novel arithmetic expressions for the calculation of the variance that we develop from previous theoretical work. This paves the way for many applications that rely on a fast but exact calculation of the variance.

相關內容

The angular resolution of a planar straight-line drawing of a graph is the smallest angle formed by two edges incident to the same vertex. Garg and Tamassia (ESA '94) constructed a family of planar graphs with maximum degree $d$ that have angular resolution $O((\log d)^{\frac{1}{2}}/d^{\frac{3}{2}})$ in any planar straight-line drawing. This upper bound has been the best known upper bound on angular resolution for a long time. In this paper, we improve this upper bound. For an arbitrarily small positive constant $\varepsilon$, we construct a family of planar graphs with maximum degree $d$ that have angular resolution $O((\log d)^\varepsilon/d^{\frac{3}{2}})$ in any planar straight-line drawing.

We prove strong rate resp. weak rate ${\mathcal O}(\tau)$ for a structure preserving temporal discretization (with $\tau$ the step size) of the stochastic Allen-Cahn equation with additive resp. multiplicative colored noise in $d=1,2,3$ dimensions. Direct variational arguments exploit the one-sided Lipschitz property of the cubic nonlinearity in the first setting to settle first order strong rate. It is the same property which allows for uniform bounds for the derivatives of the solution of the related Kolmogorov equation, and then leads to weak rate ${\mathcal O}(\tau)$ in the presence of multiplicative noise. Hence, we obtain twice the rate of convergence known for the strong error in the presence of multiplicative noise.

Given a sound first-order p-time theory $T$ capable of formalizing syntax of first-order logic we define a p-time function $g_T$ that stretches all inputs by one bit and we use its properties to show that $T$ must be incomplete. We leave it as an open problem whether for some $T$ the range of $g_T$ intersects all infinite NP sets (i.e. whether it is a proof complexity generator hard for all proof systems). A propositional version of the construction shows that at least one of the following three statements is true: - there is no p-optimal propositional proof system (this is equivalent to the non-existence of a time-optimal propositional proof search algorithm), - $E \not\subseteq P/poly$, - there exists function $h$ that stretches all inputs by one bit, is computable in sub-exponential time and its range $Rng(h)$ intersects all infinite NP sets.

Iterative refinement (IR) is a popular scheme for solving a linear system of equations based on gradually improving the accuracy of an initial approximation. Originally developed to improve upon the accuracy of Gaussian elimination, interest in IR has been revived because of its suitability for execution on fast low-precision hardware such as analog devices and graphics processing units. IR generally converges when the error associated with the solution method is small, but is known to diverge when this error is large. We propose and analyze a novel enhancement to the IR algorithm by adding a line search optimization step that guarantees the algorithm will not diverge. Numerical experiments verify our theoretical results and illustrate the effectiveness of our proposed scheme.

The sequential composition of propositional logic programs has been recently introduced. This paper studies the sequential {\em decomposition} of programs by studying Green's relations $\mathcal{L,R,J}$ -- well-known in semigroup theory -- between programs. In a broader sense, this paper is a further step towards an algebraic theory of logic programming.

In the Activation Edge-Multicover problem we are given a multigraph $G=(V,E)$ with activation costs $\{c_{e}^u,c_{e}^v\}$ for every edge $e=uv \in E$, and degree requirements $r=\{r_v:v \in V\}$. The goal is to find an edge subset $J \subseteq E$ of minimum activation cost $\sum_{v \in V}\max\{c_{uv}^v:uv \in J\}$,such that every $v \in V$ has at least $r_v$ neighbors in the graph $(V,J)$. Let $k= \max_{v \in V} r_v$ be the maximum requirement and let $\theta=\max_{e=uv \in E} \frac{\max\{c_e^u,c_e^v\}}{\min\{c_e^u,c_e^v\}}$ be the maximum quotient between the two costs of an edge. For $\theta=1$ the problem admits approximation ratio $O(\log k)$. For $k=1$ it generalizes the Set Cover problem (when $\theta=\infty$), and admits a tight approximation ratio $O(\log n)$. This implies approximation ratio $O(k \log n)$ for general $k$ and $\theta$, and no better approximation ratio was known. We obtain the first logarithmic approximation ratio $O(\log k +\log\min\{\theta,n\})$, that bridges between the two known ratios -- $O(\log k)$ for $\theta=1$ and $O(\log n)$ for $k=1$. This implies approximation ratio $O\left(\log k +\log\min\{\theta,n\}\right) +\beta \cdot (\theta+1)$ for the Activation $k$-Connected Subgraph problem, where $\beta$ is the best known approximation ratio for the ordinary min-cost version of the problem.

We say that a Hamilton cycle $C=(x_1,\ldots,x_n)$ in a graph $G$ is $k$-symmetric, if the mapping $x_i\mapsto x_{i+n/k}$ for all $i=1,\ldots,n$, where indices are considered modulo $n$, is an automorphism of $G$. In other words, if we lay out the vertices $x_1,\ldots,x_n$ equidistantly on a circle and draw the edges of $G$ as straight lines, then the drawing of $G$ has $k$-fold rotational symmetry, i.e., all information about the graph is compressed into a $360^\circ/k$ wedge of the drawing. The maximum $k$ for which there exists a $k$-symmetric Hamilton cycle in $G$ is referred to as the Hamilton compression of $G$. We investigate the Hamilton compression of four different families of vertex-transitive graphs, namely hypercubes, Johnson graphs, permutahedra and Cayley graphs of abelian groups. In several cases we determine their Hamilton compression exactly, and in other cases we provide close lower and upper bounds. The constructed cycles have a much higher compression than several classical Gray codes known from the literature. Our constructions also yield Gray codes for bitstrings, combinations and permutations that have few tracks and/or that are balanced.

We study the classical problem of approximating a non-decreasing function $f: \mathcal{X} \to \mathcal{Y}$ in $L^p(\mu)$ norm by sequentially querying its values, for known compact real intervals $\mathcal{X}$, $\mathcal{Y}$ and a known probability measure $\mu$ on $\cX$. For any function~$f$ we characterize the minimum number of evaluations of $f$ that algorithms need to guarantee an approximation $\hat{f}$ with an $L^p(\mu)$ error below $\epsilon$ after stopping. Unlike worst-case results that hold uniformly over all $f$, our complexity measure is dependent on each specific function $f$. To address this problem, we introduce GreedyBox, a generalization of an algorithm originally proposed by Novak (1992) for numerical integration. We prove that GreedyBox achieves an optimal sample complexity for any function $f$, up to logarithmic factors. Additionally, we uncover results regarding piecewise-smooth functions. Perhaps as expected, the $L^p(\mu)$ error of GreedyBox decreases much faster for piecewise-$C^2$ functions than predicted by the algorithm (without any knowledge on the smoothness of $f$). A simple modification even achieves optimal minimax approximation rates for such functions, which we compute explicitly. In particular, our findings highlight multiple performance gaps between adaptive and non-adaptive algorithms, smooth and piecewise-smooth functions, as well as monotone or non-monotone functions. Finally, we provide numerical experiments to support our theoretical results.

We show that unless P=NP, there cannot be a polynomial-time algorithm that finds a point within Euclidean distance $c^n$ (for any constant $c \ge 0$) of a local minimizer of an $n$-variate quadratic function over a polytope. This result (even with $c=0$) answers a question of Pardalos and Vavasis that appeared in 1992 on a list of seven open problems in complexity theory for numerical optimization. Our proof technique also implies that the problem of deciding whether a quadratic function has a local minimizer over an (unbounded) polyhedron, and that of deciding if a quartic polynomial has a local minimizer are NP-hard.

Consider the point line-geometry ${\mathcal P}_t(n,k)$ having as points all the $[n,k]$-linear codes having minimum dual distance at least $t+1$ and where two points $X$ and $Y$ are collinear whenever $X\cap Y$ is a $[n,k-1]$-linear code having minimum dual distance at least $t+1$. We are interested in the collinearity graph $\Lambda_t(n,k)$ of ${\mathcal P}_t(n,k).$ The graph $\Lambda_t(n,k)$ is a subgraph of the Grassmann graph and also a subgraph of the graph $\Delta_t(n,k)$ of the linear codes having minimum dual distance at least $t+1$ introduced in~[M. Kwiatkowski, M. Pankov, On the distance between linear codes, Finite Fields Appl. 39 (2016), 251--263, doi:10.1016/j.ffa.2016.02.004, arXiv:1506.00215]. We shall study the structure of $\Lambda_t(n,k)$ in relation to that of $\Delta_t(n,k)$ and we will characterize the set of its isolated vertices. We will then focus on $\Lambda_1(n,k)$ and $\Lambda_2(n,k)$ providing necessary and sufficient conditions for them to be connected.

北京阿比特科技有限公司