亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-Task Learning (MTL) plays a crucial role in real-world advertising applications such as recommender systems, aiming to achieve robust representations while minimizing resource consumption. MTL endeavors to simultaneously optimize multiple tasks to construct a unified model serving diverse objectives. In online advertising systems, tasks like Click-Through Rate (CTR) and Conversion Rate (CVR) are often treated as MTL problems concurrently. However, it has been overlooked that a conversion ($y_{cvr}=1$) necessitates a preceding click ($y_{ctr}=1$). In other words, while certain CTR tasks are associated with corresponding conversions, others lack such associations. Moreover, the likelihood of noise is significantly higher in CTR tasks where conversions do not occur compared to those where they do, and existing methods lack the ability to differentiate between these two scenarios. In this study, exposure labels corresponding to conversions are regarded as definitive indicators, and a novel task-specific loss is introduced by calculating a \textbf{p}air\textbf{wise} \textbf{r}anking (PWiseR) loss between model predictions, manifesting as pairwise ranking loss, to encourage the model to rely more on them. To demonstrate the effect of the proposed loss function, experiments were conducted on different MTL and Single-Task Learning (STL) models using four distinct public MTL datasets, namely Alibaba FR, NL, US, and CCP, along with a proprietary industrial dataset. The results indicate that our proposed loss function outperforms the BCE loss function in most cases in terms of the AUC metric.

相關內容

Open Government Data (OGD) plays a pivotal role in fostering data-driven innovation and sustainability across various sectors. Despite its potential, many public organizations are reluctant to share their data openly. While existing research has explored factors impacting the public organizations intention to share OGD, there is a paucity of research applying theoretical models to investigate the resistance by public organizations to making government data publicly available. This study addresses the gap by developing an Innovation Resistance Theory (IRT) model tailored to OGD that allows identifying predictors of resistance among public agencies. We develop an initial model based on literature and refine it through interviews with 21 public agencies across six countries. The final model describes 39 barriers related to usage, value, risks, tradition, and image. The findings contribute to the literature by adapting IRT to the context of OGD, an area where its application has been notably limited. As such, this study addresses the growing demand for novel theoretical frameworks to examine OGD adoption barriers. Practical insights are provided to support policymakers in creating data ecosystems that encourage data openness and address challenges in OGD adoption.

Explainable Artificial Intelligence (XAI) aims to improve the transparency of autonomous decision-making through explanations. Recent literature has emphasised users' need for holistic "multi-shot" explanations and the ability to personalise their engagement with XAI systems. We refer to this user-centred interaction as an XAI Experience. Despite advances in creating XAI experiences, evaluating them in a user-centred manner has remained challenging. To address this, we introduce the XAI Experience Quality (XEQ) Scale (pronounced "Seek" Scale), for evaluating the user-centred quality of XAI experiences. Furthermore, XEQ quantifies the quality of experiences across four evaluation dimensions: learning, utility, fulfilment and engagement. These contributions extend the state-of-the-art of XAI evaluation, moving beyond the one-dimensional metrics frequently developed to assess single-shot explanations. In this paper, we present the XEQ scale development and validation process, including content validation with XAI experts as well as discriminant and construct validation through a large-scale pilot study. Out pilot study results offer strong evidence that establishes the XEQ Scale as a comprehensive framework for evaluating user-centred XAI experiences.

Safe Reinforcement Learning (RL) plays an important role in applying RL algorithms to safety-critical real-world applications, addressing the trade-off between maximizing rewards and adhering to safety constraints. This work introduces a novel approach that combines RL with trajectory optimization to manage this trade-off effectively. Our approach embeds safety constraints within the action space of a modified Markov Decision Process (MDP). The RL agent produces a sequence of actions that are transformed into safe trajectories by a trajectory optimizer, thereby effectively ensuring safety and increasing training stability. This novel approach excels in its performance on challenging Safety Gym tasks, achieving significantly higher rewards and near-zero safety violations during inference. The method's real-world applicability is demonstrated through a safe and effective deployment in a real robot task of box-pushing around obstacles.

Indoor localization plays a vital role in the era of the IoT and robotics, with WiFi technology being a prominent choice due to its ubiquity. We present a method for creating WiFi fingerprinting datasets to enhance indoor localization systems and address the gap in WiFi fingerprinting dataset creation. We used the Simultaneous Localization And Mapping (SLAM) algorithm and employed a robotic platform to construct precise maps and localize robots in indoor environments. We developed software applications to facilitate data acquisition, fingerprinting dataset collection, and accurate ground truth map building. Subsequently, we aligned the spatial information generated via the SLAM with the WiFi scans to create a comprehensive WiFi fingerprinting dataset. The created dataset was used to train a deep neural network (DNN) for indoor localization, which can prove the usefulness of grid density. We conducted experimental validation within our office environment to demonstrate the proposed method's effectiveness, including a heatmap from the dataset showcasing the spatial distribution of WiFi signal strengths for the testing access points placed within the environment. Notably, our method offers distinct advantages over existing approaches as it eliminates the need for a predefined map of the environment, requires no preparatory steps, lessens human intervention, creates a denser fingerprinting dataset, and reduces the WiFi fingerprinting dataset creation time. Our method achieves 26% more accurate localization than the other methods and can create a six times denser fingerprinting dataset in one-third of the time compared to the traditional method. In summary, using WiFi RSSI Fingerprinting data surveyed by the SLAM-Enabled Robotic Platform, we can adapt our trained DNN model to indoor localization in any dynamic environment and enhance its scalability and applicability in real-world scenarios.

We present ACME: A Chatbot for asylum-seeking Migrants in Europe. ACME relies on computational argumentation and aims to help migrants identify the highest level of protection they can apply for. This would contribute to a more sustainable migration by reducing the load on territorial commissions, Courts, and humanitarian organizations supporting asylum applicants. We describe the context, system architectures, technologies, and the case study used to run the demonstration.

The Space-Air-Ground Integrated Network (SAGIN) plays a pivotal role as a comprehensive foundational network communication infrastructure, presenting opportunities for highly efficient global data transmission. Nonetheless, given SAGIN's unique characteristics as a dynamically heterogeneous network, conventional network optimization methodologies encounter challenges in satisfying the stringent requirements for network latency and stability inherent to data transmission within this network environment. Therefore, this paper proposes the use of differentiated federated reinforcement learning (DFRL) to solve the traffic offloading problem in SAGIN, i.e., using multiple agents to generate differentiated traffic offloading policies. Considering the differentiated characteristics of each region of SAGIN, DFRL models the traffic offloading policy optimization process as the process of solving the Decentralized Partially Observable Markov Decision Process (DEC-POMDP) problem. The paper proposes a novel Differentiated Federated Soft Actor-Critic (DFSAC) algorithm to solve the problem. The DFSAC algorithm takes the network packet delay as the joint reward value and introduces the global trend model as the joint target action-value function of each agent to guide the update of each agent's policy. The simulation results demonstrate that the traffic offloading policy based on the DFSAC algorithm achieves better performance in terms of network throughput, packet loss rate, and packet delay compared to the traditional federated reinforcement learning approach and other baseline approaches.

Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.

Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

北京阿比特科技有限公司