亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most studies of adaptive algorithm behavior consider performance measures based on mean values such as the mean-square error. The derived models are useful for understanding the algorithm behavior under different environments and can be used for design. Nevertheless, from a practical point of view, the adaptive filter user has only one realization of the algorithm to obtain the desired result. This letter derives a model for the variance of the squared-error sample curve of the least-mean-square (LMS) adaptive algorithm, so that the achievable cancellation level can be predicted based on the properties of the steady-state squared error. The derived results provide the user with useful design guidelines.

相關內容

Extensions of earlier algorithms and enhanced visualization techniques for approximating a correlation matrix are presented. The visualization problems that result from using column or colum--and--row adjusted correlation matrices, which give numerically a better fit, are addressed. For visualization of a correlation matrix a weighted alternating least squares algorithm is used, with either a single scalar adjustment, or a column-only adjustment with symmetric factorization; these choices form a compromise between the numerical accuracy of the approximation and the comprehensibility of the obtained correlation biplots. Some illustrative examples are discussed.

Using nonlinear projections and preserving structure in model order reduction (MOR) are currently active research fields. In this paper, we provide a novel differential geometric framework for model reduction on smooth manifolds, which emphasizes the geometric nature of the objects involved. The crucial ingredient is the construction of an embedding for the low-dimensional submanifold and a compatible reduction map, for which we discuss several options. Our general framework allows capturing and generalizing several existing MOR techniques, such as structure preservation for Lagrangian- or Hamiltonian dynamics, and using nonlinear projections that are, for instance, relevant in transport-dominated problems. The joint abstraction can be used to derive shared theoretical properties for different methods, such as an exact reproduction result. To connect our framework to existing work in the field, we demonstrate that various techniques for data-driven construction of nonlinear projections can be included in our framework.

We develop a numerical method for the Westervelt equation, an important equation in nonlinear acoustics, in the form where the attenuation is represented by a class of non-local in time operators. A semi-discretisation in time based on the trapezoidal rule and A-stable convolution quadrature is stated and analysed. Existence and regularity analysis of the continuous equations informs the stability and error analysis of the semi-discrete system. The error analysis includes the consideration of the singularity at $t = 0$ which is addressed by the use of a correction in the numerical scheme. Extensive numerical experiments confirm the theory.

We consider Maxwell eigenvalue problems on uncertain shapes with perfectly conducting TESLA cavities being the driving example. Due to the shape uncertainty, the resulting eigenvalues and eigenmodes are also uncertain and it is well known that the eigenvalues may exhibit crossings or bifurcations under perturbation. We discuss how the shape uncertainties can be modelled using the domain mapping approach and how the deformation mapping can be expressed as coefficients in Maxwell's equations. Using derivatives of these coefficients and derivatives of the eigenpairs, we follow a perturbation approach to compute approximations of mean and covariance of the eigenpairs. For small perturbations, these approximations are faster and more accurate than Monte Carlo or similar sampling-based strategies. Numerical experiments for a three-dimensional 9-cell TESLA cavity are presented.

We study the complexity (that is, the weight of the multiplication table) of the elliptic normal bases introduced by Couveignes and Lercier. We give an upper bound on the complexity of these elliptic normal bases, and we analyze the weight of some special vectors related to the multiplication table of those bases. This analysis leads us to some perspectives on the search for low complexity normal bases from elliptic periods.

Sparse identification of differential equations aims to compute the analytic expressions from the observed data explicitly. However, there exist two primary challenges. Firstly, it exhibits sensitivity to the noise in the observed data, particularly for the derivatives computations. Secondly, existing literature predominantly concentrates on single-fidelity (SF) data, which imposes limitations on its applicability due to the computational cost. In this paper, we present two novel approaches to address these problems from the view of uncertainty quantification. We construct a surrogate model employing the Gaussian process regression (GPR) to mitigate the effect of noise in the observed data, quantify its uncertainty, and ultimately recover the equations accurately. Subsequently, we exploit the multi-fidelity Gaussian processes (MFGP) to address scenarios involving multi-fidelity (MF), sparse, and noisy observed data. We demonstrate the robustness and effectiveness of our methodologies through several numerical experiments.

The numerical solution of differential equations using machine learning-based approaches has gained significant popularity. Neural network-based discretization has emerged as a powerful tool for solving differential equations by parameterizing a set of functions. Various approaches, such as the deep Ritz method and physics-informed neural networks, have been developed for numerical solutions. Training algorithms, including gradient descent and greedy algorithms, have been proposed to solve the resulting optimization problems. In this paper, we focus on the variational formulation of the problem and propose a Gauss- Newton method for computing the numerical solution. We provide a comprehensive analysis of the superlinear convergence properties of this method, along with a discussion on semi-regular zeros of the vanishing gradient. Numerical examples are presented to demonstrate the efficiency of the proposed Gauss-Newton method.

This paper introduces a new series of methods which combine modal decomposition algorithms, such as singular value decomposition and high-order singular value decomposition, and deep learning architectures to repair, enhance, and increase the quality and precision of numerical and experimental data. A combination of two- and three-dimensional, numerical and experimental dasasets are used to demonstrate the reconstruction capacity of the presented methods, showing that these methods can be used to reconstruct any type of dataset, showing outstanding results when applied to highly complex data, which is noisy. The combination of benefits of these techniques results in a series of data-driven methods which are capable of repairing and/or enhancing the resolution of a dataset by identifying the underlying physics that define the data, which is incomplete or under-resolved, filtering any existing noise. These methods and the Python codes are included in the first release of ModelFLOWs-app.

A deep learning initialized iterative (Int-Deep) method is developed for numerically solving Navier-Stokes Darcy model. For this purpose, Newton iterative method is mentioned for solving the relative finite element discretized problem. It is proved that this method converges quadratically with the convergence rate independent of the finite element mesh size under certain standard conditions. Later on, a deep learning algorithm is proposed for solving this nonlinear coupled problem. Following the ideas of an earlier work by Huang, Wang and Yang (2020), an Int-Deep algorithm is constructed for the previous problem in order to further improve the computational efficiency. A series of numerical examples are reported to confirm that the Int-Deep algorithm converges to the true solution rapidly and is robust with respect to the physical parameters in the model.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

北京阿比特科技有限公司