亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper analyses the problem of a semi-infinite fluid-driven fracture propagating through multiple stress layers in a permeable elastic medium. Such a problem represents the tip region of a planar hydraulic fracture. When the hydraulic fracture crosses a stress layer, the use of a standard tip asymptotic solution may lead to a considerable reduction of accuracy, even for the simplest case of a height-contained fracture. In this study, we propose three approaches to incorporate the effect of stress layers into the tip asymptote: non-singular integral formulation, toughness-corrected asymptote, and an ordinary differential equation approximation of the non-singular integral formulation mentioned above. As illustrated in the paper, these approaches for stress-corrected asymptotes differ in computational complexity, the complexity of implementation, and the accuracy of the approximation. In addition, the size of the validity region of the stress-corrected asymptote is evaluated, and it is shown to be greatly reduced relative to the case without layers. In order to address the issue, the stress relaxation factor is introduced. This, in turn, allows for enhancing the accuracy of the layer-crossing computation on a relatively coarse mesh to utilize the stress-corrected asymptote in hydraulic fracturing simulators for the purpose of front tracking.

相關內容

We consider the problem of uncertainty quantification in change point regressions, where the signal can be piecewise polynomial of arbitrary but fixed degree. That is we seek disjoint intervals which, uniformly at a given confidence level, must each contain a change point location. We propose a procedure based on performing local tests at a number of scales and locations on a sparse grid, which adapts to the choice of grid in the sense that by choosing a sparser grid one explicitly pays a lower price for multiple testing. The procedure is fast as its computational complexity is always of the order $\mathcal{O} (n \log (n))$ where $n$ is the length of the data, and optimal in the sense that under certain mild conditions every change point is detected with high probability and the widths of the intervals returned match the mini-max localisation rates for the associated change point problem up to log factors. A detailed simulation study shows our procedure is competitive against state of the art algorithms for similar problems. Our procedure is implemented in the R package ChangePointInference which is available via //github.com/gaviosha/ChangePointInference.

We consider the problem of mixed sparse linear regression with two components, where two real $k$-sparse signals $\beta_1, \beta_2$ are to be recovered from $n$ unlabelled noisy linear measurements. The sparsity is allowed to be sublinear in the dimension, and additive noise is assumed to be independent Gaussian with variance $\sigma^2$. Prior work has shown that the problem suffers from a $\frac{k}{SNR^2}$-to-$\frac{k^2}{SNR^2}$ statistical-to-computational gap, resembling other computationally challenging high-dimensional inference problems such as Sparse PCA and Robust Sparse Mean Estimation; here $SNR$ is the signal-to-noise ratio. We establish the existence of a more extensive computational barrier for this problem through the method of low-degree polynomials, but show that the problem is computationally hard only in a very narrow symmetric parameter regime. We identify a smooth information-computation tradeoff between the sample complexity $n$ and runtime for any randomized algorithm in this hard regime. Via a simple reduction, this provides novel rigorous evidence for the existence of a computational barrier to solving exact support recovery in sparse phase retrieval with sample complexity $n = \tilde{o}(k^2)$. Our second contribution is to analyze a simple thresholding algorithm which, outside of the narrow regime where the problem is hard, solves the associated mixed regression detection problem in $O(np)$ time with square-root the number of samples and matches the sample complexity required for (non-mixed) sparse linear regression; this allows the recovery problem to be subsequently solved by state-of-the-art techniques from the dense case. As a special case of our results, we show that this simple algorithm is order-optimal among a large family of algorithms in solving exact signed support recovery in sparse linear regression.

Many optimization problems in electrical engineering consider a large number of design parameters. A sensitivity analysis identifies the design parameters with the strongest influence on the problem of interest. This paper introduces the adjoint variable method as an efficient approach to study sensitivities of nonlinear electroquasistatic problems in time domain. In contrast to the more common direct sensitivity method, the adjoint variable method has a computational cost nearly independent of the number of parameters. The method is applied to study the sensitivity of the field grading material parameters on the performance of a 320 kV cable joint specimen, which is modeled as a Finite Element nonlinear transient electroquasistatic problem. Special attention is paid to the treatment of quantities of interest, which are evaluated at specific points in time or space. It is shown that shown that the method is a valuable tool to study this strongly nonlinear and highly transient technical example.

We propose a kernel-spectral embedding algorithm for learning low-dimensional nonlinear structures from high-dimensional and noisy observations, where the datasets are assumed to be sampled from an intrinsically low-dimensional manifold and corrupted by high-dimensional noise. The algorithm employs an adaptive bandwidth selection procedure which does not rely on prior knowledge of the underlying manifold. The obtained low-dimensional embeddings can be further utilized for downstream purposes such as data visualization, clustering and prediction. Our method is theoretically justified and practically interpretable. Specifically, we establish the convergence of the final embeddings to their noiseless counterparts when the dimension and size of the samples are comparably large, and characterize the effect of the signal-to-noise ratio on the rate of convergence and phase transition. We also prove convergence of the embeddings to the eigenfunctions of an integral operator defined by the kernel map of some reproducing kernel Hilbert space capturing the underlying nonlinear structures. Numerical simulations and analysis of three real datasets show the superior empirical performance of the proposed method, compared to many existing methods, on learning various manifolds in diverse applications.

Infinite Gray code has been introduced by Tsuiki as a redundancy-free representation of the reals. In applications the signed digit representation is mostly used which has maximal redundancy. Tsuiki presented a functional program converting signed digit code into infinite Gray code. Moreover, he showed that infinite Gray code can effectively be converted into signed digit code, but the program needs to have some non-deterministic features (see also H. Tsuiki, K. Sugihara, "Streams with a bottom in functional languages"). Berger and Tsuiki reproved the result in a system of formal first-order intuitionistic logic extended by inductive and co-inductive definitions, as well as some new logical connectives capturing concurrent behaviour. The programs extracted from the proofs are exactly the ones given by Tsuiki. In order to do so, co-inductive predicates $\bS$ and $\bG$ are defined and the inclusion $\bS \subseteq \bG$ is derived. For the converse inclusion the new logical connectives are used to introduce a concurrent version $\S_{2}$ of $S$ and $\bG \subseteq \bS_{2}$ is shown. What one is looking for, however, is an equivalence proof of the involved concepts. One of the main aims of the present paper is to close the gap. A concurrent version $\bG^{*}$ of $\bG$ and a modification $\bS^{*}$ of $\bS_{2}$ are presented such that $\bS^{*} = \bG^{*}$. A crucial tool in U. Berger, H. Tsuiki, "Intuitionistic fixed point logic" is a formulation of the Archimedean property of the real numbers as an induction principle. We introduce a concurrent version of this principle which allows us to prove that $\bS^{*}$ and $\bG^{*}$ coincide. A further central contribution is the extension of the above results to the hyperspace of non-empty compact subsets of the reals.

The Independent Cutset problem asks whether there is a set of vertices in a given graph that is both independent and a cutset. Such a problem is $\textsf{NP}$-complete even when the input graph is planar and has maximum degree five. In this paper, we first present a $\mathcal{O}^*(1.4423^{n})$-time algorithm for the problem. We also show how to compute a minimum independent cutset (if any) in the same running time. Since the property of having an independent cutset is MSO$_1$-expressible, our main results are concerned with structural parameterizations for the problem considering parameters that are not bounded by a function of the clique-width of the input. We present $\textsf{FPT}$-time algorithms for the problem considering the following parameters: the dual of the maximum degree, the dual of the solution size, the size of a dominating set (where a dominating set is given as an additional input), the size of an odd cycle transversal, the distance to chordal graphs, and the distance to $P_5$-free graphs. We close by introducing the notion of $\alpha$-domination, which allows us to identify more fixed-parameter tractable and polynomial-time solvable cases.

Recently, symbolic regression (SR) has demonstrated its efficiency for discovering basic governing relations in physical systems. A major impact can be potentially achieved by coupling symbolic regression with asymptotic methodology. The main advantage of asymptotic approach involves the robust approximation to the sought for solution bringing a clear idea of the effect of problem parameters. However, the analytic derivation of the asymptotic series is often highly nontrivial especially, when the exact solution is not available. In this paper, we adapt SR methodology to discover asymptotic series. As an illustration we consider three problem in mechanics, including two-mass collision, viscoelastic behavior of a Kelvin-Voigt solid and propagation of Rayleigh-Lamb waves. The training data is generated from the explicit exact solutions of these problems. The obtained SR results are compared to the benchmark asymptotic expansions of the above mentioned exact solutions. Both convergent and divergent asymptotic series are considered. A good agreement between SR expansions and analytical results is observed. It is demonstrated that the proposed approach can be used to identify material parameters, e.g. Poisson's ratio, and has high prospects for utilizing experimental and numerical data.

The accurate and efficient simulation of Partial Differential Equations (PDEs) in and around arbitrarily defined geometries is critical for many application domains. Immersed boundary methods (IBMs) alleviate the usually laborious and time-consuming process of creating body-fitted meshes around complex geometry models (described by CAD or other representations, e.g., STL, point clouds), especially when high levels of mesh adaptivity are required. In this work, we advance the field of IBM in the context of the recently developed Shifted Boundary Method (SBM). In the SBM, the location where boundary conditions are enforced is shifted from the actual boundary of the immersed object to a nearby surrogate boundary, and boundary conditions are corrected utilizing Taylor expansions. This approach allows choosing surrogate boundaries that conform to a Cartesian mesh without losing accuracy or stability. Our contributions in this work are as follows: (a) we show that the SBM numerical error can be greatly reduced by an optimal choice of the surrogate boundary, (b) we mathematically prove the optimal convergence of the SBM for this optimal choice of the surrogate boundary, (c) we deploy the SBM on massively parallel octree meshes, including algorithmic advances to handle incomplete octrees, and (d) we showcase the applicability of these approaches with a wide variety of simulations involving complex shapes, sharp corners, and different topologies. Specific emphasis is given to Poisson's equation and the linear elasticity equations.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司