Recent advancements in 3D perception systems have significantly improved their ability to perform visual recognition tasks such as segmentation. However, these systems still heavily rely on explicit human instruction to identify target objects or categories, lacking the capability to actively reason and comprehend implicit user intentions. We introduce a novel segmentation task known as reasoning part segmentation for 3D objects, aiming to output a segmentation mask based on complex and implicit textual queries about specific parts of a 3D object. To facilitate evaluation and benchmarking, we present a large 3D dataset comprising over 60k instructions paired with corresponding ground-truth part segmentation annotations specifically curated for reasoning-based 3D part segmentation. We propose a model that is capable of segmenting parts of 3D objects based on implicit textual queries and generating natural language explanations corresponding to 3D object segmentation requests. Experiments show that our method achieves competitive performance to models that use explicit queries, with the additional abilities to identify part concepts, reason about them, and complement them with world knowledge. Our source code, dataset, and trained models are available at //github.com/AmrinKareem/PARIS3D.
Recent advancements in computer vision and deep learning techniques have facilitated notable progress in scene understanding, thereby assisting rescue teams in achieving precise damage assessment. In this paper, we present RescueNet, a meticulously curated high-resolution post-disaster dataset that includes detailed classification and semantic segmentation annotations. This dataset aims to facilitate comprehensive scene understanding in the aftermath of natural disasters. RescueNet comprises post-disaster images collected after Hurricane Michael, obtained using Unmanned Aerial Vehicles (UAVs) from multiple impacted regions. The uniqueness of RescueNet lies in its provision of high-resolution post-disaster imagery, accompanied by comprehensive annotations for each image. Unlike existing datasets that offer annotations limited to specific scene elements such as buildings, RescueNet provides pixel-level annotations for all classes, including buildings, roads, pools, trees, and more. Furthermore, we evaluate the utility of the dataset by implementing state-of-the-art segmentation models on RescueNet, demonstrating its value in enhancing existing methodologies for natural disaster damage assessment.
Signal Temporal Logic (STL) is capable of expressing a broad range of temporal properties that controlled dynamical systems must satisfy. In the literature, both mixed-integer programming (MIP) and nonlinear programming (NLP) methods have been applied to solve optimal control problems with STL specifications. However, neither approach has succeeded in solving problems with complex long-horizon STL specifications within a realistic timeframe. This study proposes a new optimization framework, called \textit{STLCCP}, which explicitly incorporates several structures of STL to mitigate this issue. The core of our framework is a structure-aware decomposition of STL formulas, which converts the original program into a difference of convex (DC) programs. This program is then solved as a convex quadratic program sequentially, based on the convex-concave procedure (CCP). Our numerical experiments on several commonly used benchmarks demonstrate that this framework can effectively handle complex scenarios over long horizons, which have been challenging to address even using state-of-the-art optimization methods.
Though feature-alignment based Domain Adaptive Object Detection (DAOD) methods have achieved remarkable progress, they ignore the source bias issue, i.e., the detector tends to acquire more source-specific knowledge, impeding its generalization capabilities in the target domain. Furthermore, these methods face a more formidable challenge in achieving consistent classification and localization in the target domain compared to the source domain. To overcome these challenges, we propose a novel Distillation-based Source Debiasing (DSD) framework for DAOD, which can distill domain-agnostic knowledge from a pre-trained teacher model, improving the detector's performance on both domains. In addition, we design a Target-Relevant Object Localization Network (TROLN), which can mine target-related localization information from source and target-style mixed data. Accordingly, we present a Domain-aware Consistency Enhancing (DCE) strategy, in which these information are formulated into a new localization representation to further refine classification scores in the testing stage, achieving a harmonization between classification and localization. Extensive experiments have been conducted to manifest the effectiveness of this method, which consistently improves the strong baseline by large margins, outperforming existing alignment-based works.
Advances in 3D reconstruction have enabled high-quality 3D capture, but require a user to collect hundreds to thousands of images to create a 3D scene. We present CAT3D, a method for creating anything in 3D by simulating this real-world capture process with a multi-view diffusion model. Given any number of input images and a set of target novel viewpoints, our model generates highly consistent novel views of a scene. These generated views can be used as input to robust 3D reconstruction techniques to produce 3D representations that can be rendered from any viewpoint in real-time. CAT3D can create entire 3D scenes in as little as one minute, and outperforms existing methods for single image and few-view 3D scene creation. See our project page for results and interactive demos at //cat3d.github.io .
Rapid developments in streaming data technologies have enabled real-time monitoring of human activity that can deliver high-resolution data on health variables over trajectories or paths carved out by subjects as they conduct their daily physical activities. Wearable devices, such as wrist-worn sensors that monitor gross motor activity, have become prevalent and have kindled the emerging field of ``spatial energetics'' in environmental health sciences. We devise a Bayesian inferential framework for analyzing such data while accounting for information available on specific spatial coordinates comprising a trajectory or path using a Global Positioning System (GPS) device embedded within the wearable device. We offer full probabilistic inference with uncertainty quantification using spatial-temporal process models adapted for data generated from ``actigraph'' units as the subject traverses a path or trajectory in their daily routine. Anticipating the need for fast inference for mobile health data, we pursue exact inference using conjugate Bayesian models and employ predictive stacking to assimilate inference across these individual models. This circumvents issues with iterative estimation algorithms such as Markov chain Monte Carlo. We devise Bayesian predictive stacking in this context for models that treat time as discrete epochs and that treat time as continuous. We illustrate our methods with simulation experiments and analysis of data from the Physical Activity through Sustainable Transport Approaches (PASTA-LA) study conducted by the Fielding School of Public Health at the University of California, Los Angeles.
In SLAM (Simultaneous localization and mapping) problems, Pose Graph Optimization (PGO) is a technique to refine an initial estimate of a set of poses (positions and orientations) from a set of pairwise relative measurements. The optimization procedure can be negatively affected even by a single outlier measurement, with possible catastrophic and meaningless results. Although recent works on robust optimization aim to mitigate the presence of outlier measurements, robust solutions capable of handling large numbers of outliers are yet to come. This paper presents IPC, acronym for Incremental Probabilistic Consensus, a method that approximates the solution to the combinatorial problem of finding the maximally consistent set of measurements in an incremental fashion. It evaluates the consistency of each loop closure measurement through a consensus-based procedure, possibly applied to a subset of the global problem, where all previously integrated inlier measurements have veto power. We evaluated IPC on standard benchmarks against several state-of-the-art methods. Although it is simple and relatively easy to implement, IPC competes with or outperforms the other tested methods in handling outliers while providing online performances. We release with this paper an open-source implementation of the proposed method.
We present cVIL, a class-centric approach to visual interactive labeling, which facilitates human annotation of large and complex image data sets. cVIL uses different property measures to support instance labeling for labeling difficult instances and batch labeling to quickly label easy instances. Simulated experiments reveal that cVIL with batch labeling can outperform traditional labeling approaches based on active learning. In a user study, cVIL led to better accuracy and higher user preference compared to a traditional instance-based visual interactive labeling approach based on 2D scatterplots.
Place recognition is the foundation for enabling autonomous systems to achieve independent decision-making and safe operations. It is also crucial in tasks such as loop closure detection and global localization within SLAM. Previous methods utilize mundane point cloud representations as input and deep learning-based LiDAR-based Place Recognition (LPR) approaches employing different point cloud image inputs with convolutional neural networks (CNNs) or transformer architectures. However, the recently proposed Mamba deep learning model, combined with state space models (SSMs), holds great potential for long sequence modeling. Therefore, we developed OverlapMamba, a novel network for place recognition, which represents input range views (RVs) as sequences. In a novel way, we employ a stochastic reconstruction approach to build shift state space models, compressing the visual representation. Evaluated on three different public datasets, our method effectively detects loop closures, showing robustness even when traversing previously visited locations from different directions. Relying on raw range view inputs, it outperforms typical LiDAR and multi-view combination methods in time complexity and speed, indicating strong place recognition capabilities and real-time efficiency.
To enable context-aware computer assistance in the operating room of the future, cognitive systems need to understand automatically which surgical phase is being performed by the medical team. The primary source of information for surgical phase recognition is typically video, which presents two challenges: extracting meaningful features from the video stream and effectively modeling temporal information in the sequence of visual features. For temporal modeling, attention mechanisms have gained popularity due to their ability to capture long-range dependencies. In this paper, we explore design choices for attention in existing temporal models for surgical phase recognition and propose a novel approach that uses attention more effectively and does not require hand-crafted constraints: TUNeS, an efficient and simple temporal model that incorporates self-attention at the core of a convolutional U-Net structure. In addition, we propose to train the feature extractor, a standard CNN, together with an LSTM on preferably long video segments, i.e., with long temporal context. In our experiments, almost all temporal models performed better on top of feature extractors that were trained with longer temporal context. On these contextualized features, TUNeS achieves state-of-the-art results on the Cholec80 dataset. This study offers new insights on how to use attention mechanisms to build accurate and efficient temporal models for surgical phase recognition. Implementing automatic surgical phase recognition is essential to automate the analysis and optimization of surgical workflows and to enable context-aware computer assistance during surgery, thus ultimately improving patient care.
Recent advances in mobile augmented reality (AR) techniques have shed new light on personal visualization for their advantages of fitting visualization within personal routines, situating visualization in a real-world context, and arousing users' interests. However, enabling non-experts to create data visualization in mobile AR environments is challenging given the lack of tools that allow in-situ design while supporting the binding of data to AR content. Most existing AR authoring tools require working on personal computers or manually creating each virtual object and modifying its visual attributes. We systematically study this issue by identifying the specificity of AR glyph-based visualization authoring tool and distill four design considerations. Following these design considerations, we design and implement MARVisT, a mobile authoring tool that leverages information from reality to assist non-experts in addressing relationships between data and virtual glyphs, real objects and virtual glyphs, and real objects and data. With MARVisT, users without visualization expertise can bind data to real-world objects to create expressive AR glyph-based visualizations rapidly and effortlessly, reshaping the representation of the real world with data. We use several examples to demonstrate the expressiveness of MARVisT. A user study with non-experts is also conducted to evaluate the authoring experience of MARVisT.